ePIC Light Meson Form Factors: Early Physics

> Stephen JD Kay University of York

61-

EDT Meeting 16/09/24

- Opportunities for meson structure studies very early
- Electron-deuteron collisions in Y2

Opportunities for meson structure studies very early

University of York

- Electron-deuteron collisions in Y2
- π^+ production from proton, main DEMP reaction of interest for F_{π}

Stephen JD Kay

16/09/24

1 /

Opportunities for meson structure studies very early

University of York

- Electron-deuteron collisions in Y2
- In e + d collisions, can also have π^- production from the neutron

16/09/24

1 / 7

Stephen JD Kay

- Opportunities for meson structure studies very early
- Electron-deuteron collisions in Y2
- In e + d collisions, can also have π^- production from the neutron
- Major supporting reaction for *F*_π studies
- Key model validation test

16/09/24

• These studies have been mentioned in all papers written on EIC meson FF so far, including the YR.

Stephen JD Kay University of York

- Opportunities for meson structure studies very early
- Electron-deuteron collisions in Y2
- In e + d collisions, can also have π^- production from the neutron
- Major supporting reaction for *F*_π studies
- Key model validation test

- These studies have been mentioned in all papers written on EIC meson FF so far, including the YR.
- $\, \circ \,$ Also interesting physics in π^+/π^- ratios from deuterium
 - Hard-soft factorisation and GPD insights

• To access F_{π} at high Q^2 , must measure F_{π} indirectly

• Use the "pion cloud" of the proton via $p(e, e'\pi^+n)$

Stephen JD Kay

- To access F_{π} at high Q^2 , must measure F_{π} indirectly
 - Use the "pion cloud" of the proton via $p(e, e'\pi^+n)$
- At small -t, the pion pole process dominates σ_L

University of York

Stephen JD Kay

• To access F_{π} at high Q^2 , must measure F_{π} indirectly

• Use the "pion cloud" of the proton via $p(e, e'\pi^+ n)$

• At small -t, the pion pole process dominates σ_L

University of York

• In the Born term model, F_{π}^2 appears as -

$$rac{d\sigma_L}{dt} \propto rac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

<u>16/09/24</u>

• To access F_{π} at high Q^2 , must measure F_{π} indirectly

• Use the "pion cloud" of the proton via $p(e, e'\pi^+ n)$

• At small -t, the pion pole process dominates σ_L

University of York

• In the Born term model, F_{π}^2 appears as -

$$rac{d\sigma_L}{dt} \propto rac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

We do not use the Born term model

Stephen JD Kay

2

• To access F_{π} at high Q^2 , must measure F_{π} indirectly

• Use the "pion cloud" of the proton via $p(e, e'\pi^+ n)$

- At small -t, the pion pole process dominates σ_L
- In the Born term model, F_{π}^2 appears as -

$$rac{d\sigma_L}{dt} \propto rac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

- We do not use the Born term model
- Drawbacks of this technique -

Stephen JD Kay

- Isolating σ_L experimentally challenging
- Theoretical uncertainty in F_{π} extraction
 - Model dependent (smaller dependency at low -t)

University of York

• To access F_{π} at high Q^2 , must measure F_{π} indirectly

• Use the "pion cloud" of the proton via $p(e, e'\pi^+ n)$

- At small -t, the pion pole process dominates σ_L
- In the Born term model, F_{π}^2 appears as -

$$rac{d\sigma_L}{dt} \propto rac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

- We do not use the Born term model
- Drawbacks of this technique -
 - Isolating σ_L experimentally challenging
 - Theoretical uncertainty in F_{π} extraction
 - Model dependent (smaller dependency at low -t)
 - Measure Deep Exclusive Meson Production (DEMP)

Stephen JD Kay

University of York

$$2\pi \frac{d^2\sigma}{dtd\phi} = \epsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi,$$

Stephen JD Kay University of York 16/09/24

3 / 7

• Physical cross section for the electroproduction process is $d^2\sigma \quad d\sigma_I \quad d\sigma_T \quad d\sigma_{IT} \quad d\sigma_{TT} \quad c$

$$2\pi \frac{d\sigma}{dtd\phi} = \epsilon \frac{d\sigma}{dt} + \frac{d\sigma}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma}{dt} \cos\phi + \epsilon \frac{d\sigma}{dt} \cos 2\phi,$$
$$\epsilon = \left(1 + 2\frac{(E_e - E_{e'})^2 + Q^2}{Q^2} \tan^2 \frac{\theta_{e'}}{2}\right)^{-1}$$

• $\epsilon \rightarrow$ Virtual photon polarisation

$$2\pi \frac{d^2\sigma}{dtd\phi} = \epsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi,$$
$$\epsilon = \left(1 + 2\frac{(E_e - E_{e'})^2 + Q^2}{Q^2} \tan^2 \frac{\theta_{e'}}{2}\right)^{-1}$$

• $\epsilon
ightarrow$ Virtual photon polarisation

University of York

 In JLab Hall C, L-T separation can be used to isolate σ_L from σ_T

16/09/24

3 / 7

Stephen JD Kay

$$2\pi \frac{d^2\sigma}{dtd\phi} = \epsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi,$$
$$\epsilon = \left(1 + 2\frac{(E_e - E_{e'})^2 + Q^2}{Q^2} \tan^2 \frac{\theta_{e'}}{2}\right)^{-1}$$

• $\epsilon \rightarrow$ Virtual photon polarisation

University of York

- In JLab Hall C, L-T separation can be used to isolate σ_L from σ_T
- Need data at lowest -t possible, σ_L has maximum pole contribution here

Stephen JD Kay

16/09/24

3 / 7

$$2\pi \frac{d^2\sigma}{dtd\phi} = \epsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi,$$
$$\epsilon = \left(1 + 2\frac{(E_e - E_{e'})^2 + Q^2}{Q^2} \tan^2 \frac{\theta_{e'}}{2}\right)^{-1}$$

• $\epsilon
ightarrow$ Virtual photon polarisation

- In JLab Hall C, L-T separation can be used to isolate σ_L from σ_T
- Need data at lowest -t possible, σ_L has maximum pole contribution here
- Measure at 2(+) values of ϵ

• For a collider -

Stephen JD Kay

$$\epsilon = \frac{2(1-y)}{1+(1-y)^2}$$
 with $y = \frac{Q^2}{x(s_{tot} - M_N^2)}$

16/09/24

4 / 7

• y is the fractional energy loss

University of York

• For a collider -

$$\epsilon = \frac{2(1-y)}{1+(1-y)^2}$$
 with $y = \frac{Q^2}{x(s_{tot} - M_N^2)}$

• y is the fractional energy loss

• Systematic uncertainties in σ_L magnified by $1/\Delta\epsilon$

• Ideally, $\Delta \epsilon > 0.2$

Stephen JD Kay University of York

• For a collider -

$$\epsilon = \frac{2(1-y)}{1+(1-y)^2}$$
 with $y = \frac{Q^2}{x(s_{tot} - M_N^2)}$

• y is the fractional energy loss

• Systematic uncertainties in σ_L magnified by $1/\Delta\epsilon$

• Ideally, $\Delta \epsilon > 0.2$

- To access $\epsilon < 0.8$ with a collider, need y > 0.5
 - Only accessible at small s_{tot}
 - \circ Requires low proton energies (\sim 10 GeV), luminosity too low

• For a collider -

$$\epsilon = \frac{2(1-y)}{1+(1-y)^2}$$
 with $y = \frac{Q^2}{x(s_{tot} - M_N^2)}$

• y is the fractional energy loss

• Systematic uncertainties in σ_L magnified by $1/\Delta\epsilon$

• Ideally, $\Delta\epsilon > 0.2$

- To access $\epsilon < 0.8$ with a collider, need y > 0.5
 - Only accessible at small s_{tot}
 - $\circ\,$ Requires low proton energies ($\sim 10\,$ GeV), luminosity too low

16/09/24

4/7

• Conventional L-T separation not practical, need another way to determine σ_L

σ_L Isolation with a Model at the EIC

• QCD scaling predicts $\sigma_L \propto Q^{-6}$ and $\sigma_T \propto Q^{-8}$

Stephen JD Kay

Predictions are assuming $\epsilon > 0.9995$

T.Vrancx, J. Ryckebusch, PRC 89(2014)025203

5 /

University of York

σ_L Isolation with a Model at the EIC

- QCD scaling predicts $\sigma_L \propto Q^{-6}$ and $\sigma_T \propto Q^{-8}$
- At the high Q^2 and Waccessible at the EIC, phenomenological models predict $\sigma_L \gg \sigma_T$ at small -t
- Extract σ_L by using a model to isolate dominant $d\sigma_L/dt$ from measured $d\sigma_{UNS}/dt$

Stephen JD Kay

Predictions are assuming $\epsilon > 0.9995$

16/09/24

5 /

University of York

σ_L Isolation with a Model at the EIC

- QCD scaling predicts $\sigma_L \propto Q^{-6}$ and $\sigma_T \propto Q^{-8}$
- At the high Q^2 and Waccessible at the EIC, phenomenological models predict $\sigma_L \gg \sigma_T$ at small -t
- Extract σ_L by using a model to isolate dominant $d\sigma_L/dt$ from measured $d\sigma_{UNS}/dt$
- Examine π⁺/π[−] ratios as a test of the model → Deuterium data

Stephen JD Kay

Predictions are assuming $\epsilon > 0.9995$

University of York

16/09/24

5 /

• Measure exclusive ${}^{2}H(e, e'\pi^{+}n)n$ and ${}^{2}H(e, e'\pi^{-}p)p$ in same kinematics as $p(e, e'\pi^{+}n)$

- Measure exclusive ${}^{2}H(e, e'\pi^{+}n)n$ and ${}^{2}H(e, e'\pi^{-}p)p$ in same kinematics as $p(e, e'\pi^{+}n)$
- π *t*-channel diagram is purely isovector \rightarrow G-Parity conserved

$$R = \frac{\sigma [n(e, e'\pi^{-}p)]}{\sigma [p(e, e'\pi^{+}n)]} = \frac{|A_V - A_S|^2}{|A_V - A_S|^2}$$

- Measure exclusive ${}^{2}H(e, e'\pi^{+}n)n$ and ${}^{2}H(e, e'\pi^{-}p)p$ in same kinematics as $p(e, e'\pi^{+}n)$
- π *t*-channel diagram is purely isovector \rightarrow G-Parity conserved

$$R = \frac{\sigma [n(e, e'\pi^{-}p)]}{\sigma [p(e, e'\pi^{+}n)]} = \frac{|A_V - A_S|^2}{|A_V - A_S|^2}$$

 R will be diluted if σ_T not small or if there are significant non-pole contributions to σ_L

- Measure exclusive ${}^{2}H(e, e'\pi^{+}n)n$ and ${}^{2}H(e, e'\pi^{-}p)p$ in same kinematics as $p(e, e'\pi^{+}n)$
- π *t*-channel diagram is purely isovector \rightarrow G-Parity conserved

$$R = \frac{\sigma [n(e, e'\pi^- p)]}{\sigma [p(e, e'\pi^+ n)]} = \frac{|A_V - A_S|^2}{|A_V - A_S|^2}$$

- R will be diluted if σ_T not small or if there are significant non-pole contributions to σ_L
- Compare R to model expectations

T.Vrancx, J. Ryckebusch, PRC 89(2014)025203

Stephen JD Kay

University of York

16/09/24

6 /

- Electron-deuteron collisions in Y2
 - Can start very quickly on model validation studies
 - Critical supporting reaction for F_{π} studies

- Electron-deuteron collisions in Y2
 - Can start very quickly on model validation studies
 - Critical supporting reaction for F_{π} studies
- Need to incorporate deuteron module for DEMPgen
 - Fermi-Momentum needs to be incorporated
- Enables other physics studies too

- Electron-deuteron collisions in Y2
 - Can start very quickly on model validation studies
 - Critical supporting reaction for F_{π} studies
- Need to incorporate deuteron module for DEMPgen
 - Fermi-Momentum needs to be incorporated
- Enables other physics studies too
- 10x100 GeV electron-proton collisions in Y3
 - Initial data for pion/kaon form factors possible very early

<u>16/09/24</u>

7/7

- 10x100 pion simulations already nearly done
- Kaon studies in progress

- Electron-deuteron collisions in Y2
 - Can start very quickly on model validation studies
 - Critical supporting reaction for F_{π} studies
- Need to incorporate deuteron module for DEMPgen
 - Fermi-Momentum needs to be incorporated
- Enables other physics studies too
- 10×100 GeV electron-proton collisions in Y3
 - Initial data for pion/kaon form factors possible very early
 - 10x100 pion simulations already nearly done
 - Kaon studies in progress
 - \circ How high we can go in Q^2 strongly depends upon $\int {\cal L}$ in this initial period
 - $\,\circ\,$ Low Q^2 systematics limited, high Q^2 stats limited

- Electron-deuteron collisions in Y2
 - Can start very quickly on model validation studies
 - Critical supporting reaction for F_{π} studies
- Need to incorporate deuteron module for DEMPgen
 - Fermi-Momentum needs to be incorporated
- Enables other physics studies too
- 10×100 GeV electron-proton collisions in Y3
 - Initial data for pion/kaon form factors possible very early
 - 10x100 pion simulations already nearly done
 - Kaon studies in progress
 - $\circ\,$ How high we can go in Q^2 strongly depends upon $\int {\cal L}$ in this initial period
 - $\,\circ\,$ Low Q^2 systematics limited, high Q^2 stats limited
- Proposed programme promising for light meson form factors
- Good early challenge for FF detectors

Thanks for listening, any questions? UNIVERSITY Science and Technology **Facilities Council**

With thanks to Garth Huber and Love Preet at the University of Regina, as well as the Meson Structure Working Group.

stephen.kay@york.ac.uk

This research was supported by UK Research and Innovation: Science and Technology Facilities council (UKRI:STFC) grants ST/W004852/1, ST/V001035/1 and the Natural Sciences and Engineering Research Council of Canada (NSERC), FRN: SAPPJ-2021-00026