ePIC Light Meson Form Factors: Early Physics

> Stephen JD Kay University of York

FEE 且

> iE 可

> > 64:

Ë 刯

iii ii

Ħ

EDT Meeting 16/09/24

- Opportunities for meson structure studies very early
- Electron-deuteron collisions in Y2

- Opportunities for meson structure studies very early
- Electron-deuteron collisions in Y2
- π^+ production from proton, main DEMP reaction of interest for F_{π}

Stephen JD Kay University of York $\overline{16/09/24}$

- Opportunities for meson structure studies very early
- Electron-deuteron collisions in Y2
- \circ In $e + d$ collisions, can also have π^- production from the neutron

- Opportunities for meson structure studies very early
- Electron-deuteron collisions in Y2
- \circ In $e + d$ collisions, can also have π^- production from the neutron
- \circ Major supporting reaction for F_{π} studies
- Key model validation test

These studies have been mentioned in all papers written on EIC meson FF so far, including the YR.

- Opportunities for meson structure studies very early
- Electron-deuteron collisions in Y2
- \circ In $e + d$ collisions, can also have π^- production from the neutron
- \circ Major supporting reaction for F_{π} studies
- Key model validation test

- These studies have been mentioned in all papers written on EIC meson FF so far, including the YR.
- Also interesting physics in π^+/π^- ratios from deuterium
	- Hard-soft factorisation and GPD insights

To access F_π at high Q^2 , must measure F_π indirectly Use the "pion cloud" of the proton via $p(e, e'\pi^+ n)$

Measurement of F_{π} at High Q^2

- To access F_π at high Q^2 , must measure F_π indirectly
	- Use the "pion cloud" of the proton via $p(e, e'\pi^+ n)$
- At small $-t$, the pion pole process dominates σ_L

Use the "pion cloud" of the proton via $p(e, e'\pi^+ n)$

 \circ At small $-t$, the pion pole process dominates σ_L

In the Born term model, F_{π}^2 appears as -

$$
\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)
$$

Use the "pion cloud" of the proton via $p(e, e'\pi^+ n)$

 \circ At small $-t$, the pion pole process dominates σ_L

In the Born term model, F_{π}^2 appears as -

$$
\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)
$$

Stephen JD Kay University of York $16/09/24$

We do not use the Born term model

Use the "pion cloud" of the proton via $p(e, e'\pi^+ n)$

- \circ At small $-t$, the pion pole process dominates σ_L
- In the Born term model, F_{π}^2 appears as -

$$
\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)
$$

- We do not use the Born term model \circ
- Drawbacks of this technique \circ
	- **Isolating** σ experimentally challenging
	- **Theoretical uncertainty in** F_π **extraction**
		- Model dependent (smaller dependency at low -t)

Use the "pion cloud" of the proton via $p(e, e'\pi^+ n)$

- \circ At small $-t$, the pion pole process dominates σ_L
- In the Born term model, F_{π}^2 appears as -

$$
\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)
$$

- We do not use the Born term model
- Drawbacks of this technique \circ
	- **Isolating** σ experimentally challenging
	- **Theoretical uncertainty in** F_π **extraction**
		- Model dependent
			- (smaller dependency at low -t)
	- Measure Deep Exclusive Meson Production (DEMP)

Physical cross section for the electroproduction process is - $2\pi \frac{d^2\sigma}{d\omega}$ $\frac{d^2\sigma}{dt d\phi} = \epsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi,$

Physical cross section for the electroproduction process is - \circ $2\pi \frac{d^2\sigma}{d\omega}$ $\frac{d^2\sigma}{dt d\phi} = \epsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi,$!−¹ $\epsilon = \left(1 + 2\frac{(E_e - E_{e'})^2 + Q^2}{2}\right)$ $\frac{(\epsilon_e)^2 + Q^2}{Q^2}$ tan² $\frac{\theta_e}{2}$ 2

 $\circ \epsilon \rightarrow$ Virtual photon polarisation

Physical cross section for the electroproduction process is - \circ

$$
2\pi \frac{d^2\sigma}{dt d\phi} = \epsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{LT}}{dt} \cos \phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi,
$$

$$
\epsilon = \left(1 + 2\frac{(\epsilon_{\epsilon} - \epsilon_{\epsilon'})^2 + Q^2}{Q^2} \tan^2 \frac{\theta_{\epsilon'}}{2}\right)^{-1}
$$

 $\circ \epsilon \rightarrow$ Virtual photon polarisation

In JLab Hall C, L-T separation can be used to isolate σ_I from σ_T

Physical cross section for the electroproduction process is - \circ

$$
2\pi \frac{d^2\sigma}{dt d\phi} = \epsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{LT}}{dt} \cos \phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi,
$$

$$
\epsilon = \left(1 + 2\frac{(E_e - E_{e'})^2 + Q^2}{Q^2} \tan^2 \frac{\theta_{e'}}{2}\right)^{-1}
$$

 $\circ \epsilon \rightarrow$ Virtual photon polarisation

- In JLab Hall C, L-T separation can be used to isolate σ_I from σ_T
- \circ Need data at lowest $-t$ possible, σ_l has maximum pole contribution here

Physical cross section for the electroproduction process is - \circ

$$
2\pi \frac{d^2\sigma}{dt d\phi} = \epsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{LT}}{dt} \cos \phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi,
$$

$$
\epsilon = \left(1 + 2\frac{(E_e - E_{e'})^2 + Q^2}{Q^2} \tan^2 \frac{\theta_{e'}}{2}\right)^{-1}
$$

 $\circ \epsilon \rightarrow$ Virtual photon polarisation

- In JLab Hall C, L-T separation can be used to isolate σ_I from σ_T
- \circ Need data at lowest $-t$ possible, σ_l has maximum pole contribution here
- \circ Measure at 2(+) values of ϵ

Isolating σ_L from σ_T in an e-p Collider

For a collider -

$$
\epsilon = \frac{2(1-y)}{1 + (1-y)^2}
$$
 with $y = \frac{Q^2}{x(s_{tot} - M_N^2)}$

Stephen JD Kay University of York 16/09/24 4/7

 \circ y is the fractional energy loss

Isolating σ_L from σ_T in an e-p Collider

For a collider -

$$
\epsilon = \frac{2(1-y)}{1 + (1-y)^2}
$$
 with $y = \frac{Q^2}{x(s_{tot} - M_N^2)}$

 \circ y is the fractional energy loss

 \circ Systematic uncertainties in σ _L magnified by 1/ Δ ε

 \circ Ideally, $\Delta \epsilon > 0.2$

Isolating σ_I from σ_T in an e-p Collider

For a collider -

$$
\epsilon = \frac{2(1-y)}{1 + (1-y)^2}
$$
 with $y = \frac{Q^2}{x(s_{tot} - M_N^2)}$

y is the fractional energy loss

 \circ Systematic uncertainties in σ _L magnified by 1/ Δ ε

 \circ Ideally, $\Delta \epsilon > 0.2$

- \bullet To access $\epsilon < 0.8$ with a collider, need $v > 0.5$
	- \circ Only accessible at small s_{tot}
	- \circ Requires low proton energies (~ 10 GeV), luminosity too low

Isolating σ_I from σ_T in an e-p Collider

For a collider -

$$
\epsilon = \frac{2(1-y)}{1 + (1-y)^2}
$$
 with $y = \frac{Q^2}{x(s_{tot} - M_N^2)}$

y is the fractional energy loss

 \circ Systematic uncertainties in σ _L magnified by 1/ Δ ε

 \circ Ideally, $\Delta \epsilon > 0.2$

- \bullet To access $\epsilon < 0.8$ with a collider, need $v > 0.5$
	- \circ Only accessible at small s_{tot}
	- \circ Requires low proton energies (~ 10 GeV), luminosity too low
- Conventional L-T separation not practical, need another way to determine σ_l

σ _I Isolation with a Model at the EIC

• QCD scaling predicts $\sigma_I \propto Q^{-6}$ and $\sigma_T \propto Q^{-8}$

Predictions are assuming $\epsilon > 0.9995$

T.Vrancx, J. Ryckebusch, PRC 89(2014)025203

σ _I Isolation with a Model at the EIC

- **QCD** scaling predicts $\sigma_L \propto Q^{-6}$ and $\sigma_T \propto Q^{-8}$
- At the high Q^2 and W accessible at the EIC, phenomenological models predict $\sigma_l \gg \sigma_T$ at small $-t$
- \circ Extract σ_l by using a model to isolate dominant $d\sigma_l/dt$ from measured $d\sigma_{UNS}/dt$

Predictions are assuming $\epsilon > 0.9995$

σ _I Isolation with a Model at the EIC

- **QCD** scaling predicts $\sigma_L \propto Q^{-6}$ and $\sigma_T \propto Q^{-8}$
- At the high Q^2 and W accessible at the EIC, phenomenological models predict $\sigma_l \gg \sigma_T$ at small $-t$
- \circ Extract σ , by using a model to isolate dominant $d\sigma_l/dt$ from measured $d\sigma_{UNS}/dt$
- Examine π^+/π^- ratios as a test of the model \rightarrow Deuterium data

Predictions are assuming $\epsilon > 0.9995$

Measure exclusive $^{2}H(e,e^{\prime}\pi^{+}n)n$ and $^{2}H(e,e^{\prime}\pi^{-}p)p$ in same kinematics as $p(e, e^\prime \pi^+ n)$

- Measure exclusive $^{2}H(e,e^{\prime}\pi^{+}n)n$ and $^{2}H(e,e^{\prime}\pi^{-}p)p$ in same kinematics as $p(e, e^\prime \pi^+ n)$
- $\circ \pi$ t-channel diagram is purely isovector \rightarrow G-Parity conserved

$$
R = \frac{\sigma [n(e, e'\pi^- \rho)]}{\sigma [p(e, e'\pi^+ n)]} = \frac{|A_V - A_S|^2}{|A_V - A_S|^2}
$$

- Measure exclusive $^{2}H(e,e^{\prime}\pi^{+}n)n$ and $^{2}H(e,e^{\prime}\pi^{-}p)p$ in same kinematics as $p(e, e^\prime \pi^+ n)$
- $\circ \pi$ t-channel diagram is purely isovector \rightarrow G-Parity conserved

$$
R = \frac{\sigma [n(e, e'\pi^- \rho)]}{\sigma [p(e, e'\pi^+ n)]} = \frac{|A_V - A_S|^2}{|A_V - A_S|^2}
$$

 \circ R will be diluted if $\sigma\tau$ not small or if there are significant non-pole contributions to σ_l

- Measure exclusive $^{2}H(e,e^{\prime}\pi^{+}n)n$ and $^{2}H(e,e^{\prime}\pi^{-}p)p$ in same kinematics as $p(e, e^\prime \pi^+ n)$
- $\circ \pi$ t-channel diagram is purely isovector \rightarrow G-Parity conserved

$$
R = \frac{\sigma [n(e, e'\pi^- \rho)]}{\sigma [p(e, e'\pi^+ n)]} = \frac{|A_V - A_S|^2}{|A_V - A_S|^2}
$$

- \circ R will be diluted if $\sigma\tau$ not small or if there are significant non-pole contributions to σ_l
- \circ Compare R to model expectations

T.Vrancx, J. Ryckebusch, PRC 89(2014)025203

- Electron-deuteron collisions in Y2 Ω
	- Can start very quickly on model validation studies
	- \circ Critical supporting reaction for F_{π} studies

- Electron-deuteron collisions in Y2 Ω
	- Can start very quickly on model validation studies
	- \circ Critical supporting reaction for F_{π} studies
- Need to incorporate deuteron module for DEMPgen
	- Fermi-Momentum needs to be incorporated
- Enables other physics studies too

- Electron-deuteron collisions in Y2 Ω
	- Can start very quickly on model validation studies
	- \circ Critical supporting reaction for F_{π} studies
- Need to incorporate deuteron module for DEMPgen
	- Fermi-Momentum needs to be incorporated
- Enables other physics studies too
- 10x100 GeV electron-proton collisions in Y3
	- \circ Initial data for pion/kaon form factors possible very early
	- 10x100 pion simulations already nearly done
	- Kaon studies in progress

- Electron-deuteron collisions in Y2
	- Can start very quickly on model validation studies
	- \circ Critical supporting reaction for F_{π} studies
- Need to incorporate deuteron module for DEMPgen
	- Fermi-Momentum needs to be incorporated
- Enables other physics studies too
- 10x100 GeV electron-proton collisions in Y3
	- Initial data for pion/kaon form factors possible very early
	- \circ 10x100 pion simulations already nearly done
	- Kaon studies in progress
	- How high we can go in Q^2 strongly depends upon $\int \mathcal{L}$ in this initial period
	- Low Q^2 systematics limited, high Q^2 stats limited

- Electron-deuteron collisions in Y2
	- Can start very quickly on model validation studies
	- \circ Critical supporting reaction for F_π studies
- Need to incorporate deuteron module for DEMPgen
	- Fermi-Momentum needs to be incorporated
- Enables other physics studies too
- 10x100 GeV electron-proton collisions in Y3
	- Initial data for pion/kaon form factors possible very early
	- \circ 10x100 pion simulations already nearly done
	- Kaon studies in progress
	- How high we can go in Q^2 strongly depends upon $\int \mathcal{L}$ in this initial period
	- Low Q^2 systematics limited, high Q^2 stats limited
- Proposed programme promising for light meson form factors
- Good early challenge for FF detectors

Thanks for listening, any questions? **IINIVERSITY Science and Technology Facilities Council**

With thanks to Garth Huber and Love Preet at the University of Regina, as well as the Meson Structure Working Group.

stephen.kay@york.ac.uk

This research was supported by UK Research and Innovation: Science and Technology Facilities council (UKRI:STFC) grants ST/W004852/1, ST/V001035/1 and the Natural Sciences and Engineering Research Council of Canada (NSERC), FRN: SAPPJ-2021-00026