

Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC

Mateusz Dyndal (DESY)

BNL Nuclear Physics Seminar

13 December 2016

Motivation

- Euler-Heisenberg (effective) Lagrangian [Z. Phys. 98 (1936) 714]
- Original motivation: calculate the rate for light-by-light (LbyL) scattering
 - Applying it for LbyL corresponds to a tree-level calculations (valid only in low-energy limit i.e. p << m_e):

- Exact calculations: <u>loops</u>
 - Box diagrams involve charged fermions and W bosons

LbyL scattering: experimental approach

[Hughes and Jauncey, Phys. Rev. (36 1930), 773]

Light-light box experiment

``No light was detected."

"Calculations show that if the photon has a cross section, its area must be less than $3x10^{-20}$ cm²."

(First?) Apparatus for a light-light scattering experiment: The two lenses C and D focus sun light on the same spot 0 in a light-tight box AB. The dark-adapted eye of an observer at the point P serves as the detector for scattered light.

LbyL scattering: experimental approach

[Hughes and Jauncey, Phys. Rev. (36 1930), 773]

Light-light box experiment

``No light was detected."

"Calculations show that if the photon has a cross section, its area must be less than **3x10**-20 cm²."

(First?) Apparatus for a light-light scattering experiment: The two lenses C and D focus sun light on the same spot O in a light-tight box AB. The dark-adapted eye of an observer at the point P serves as the detector for scattered light.

The cross section for scattering of visible light is of the order of 10-60 cm²

Previous experiments

Experimental status prior to the ATLAS result

Elastic LbyL scattering	γγ -> γγ	Not observed
Delbruck scattering	γZ -> γZ	Observed ('53 - '98)
Photon splitting in Z field	γΖ -> γγΖ	Observed (2002)
Vacuum electric/magnetic birefringence	γF -> γF	Not observed
Photon splitting in electric/magnetic field	γF -> γγF	Not observed
Impact on muon (electron) g-2	BI -> I	"Observed"
Hadronic LbyL (direct)	$ZZ \rightarrow \pi^0/\eta/\eta'$	Observed ('85 - '88)

Photon splitting

 $\Theta = 2.4 \div 20 \text{ mrad}$

- First observation [PRL 89 (2002) 061802]
 - ROKK-1M facility at the VEPP-4M collider
 - Tagged photon beam experiment (BGO target)
 - Photon energy region: 120-450 MeV
 - ~400 candidate events are observed, in agreement with QED expectations

Impact on muon g-2

- Significant contribution of LbyL graphs with electron
 - Dominate sixth-order QED contributions
 - "Surprisingly large" factor $a_{\mu}^{(6)}(\mathrm{lbl},e) = \frac{2}{3}\pi^{2}\ln\frac{m_{\mu}}{m} + \cdots$

$$a_{\mu}^{(6)}(\mathrm{lbl},e) \simeq 20.947\,924\,89(16)\,\left(\frac{\alpha}{\pi}\right)^3 = 2.625\,351\,02(2)\times 10^{-7}$$
 $a_{\mu} = (g_{\mu} - 2)/2$ $a_{\mu}^{(6)} = 24.050\,509\,64\,(46)\,\left(\frac{\alpha}{\pi}\right)^3$ [Phys.Rept. 477 (2009) 1-110]

$$a_{\mu} = (g_{\mu} - 2)/2$$

[Phys.Rept. 477 (2009) 1-110]

- "Hadronic" LbyL contribution is relatively small
 - Dominated by pseudoscalar exchange diagrams

$$a_{\mu}^{\mathrm{LbL;PS}} = (99 \pm 16) \times 10^{-11} \longrightarrow a_{\mu}^{\mathrm{LbL;had}} = (116 \pm 39) \times 10^{-11}$$

Data/theory status:

$$a_{\mu}^{\rm exp} = 1.16592080(63) \times 10^{-3}$$

$$a_{\mu}^{\rm the} = 1.16591790(65) \times 10^{-3}$$

$$\delta a_{\mu}^{\rm NP?} = a_{\mu}^{\rm exp} - a_{\mu}^{\rm the} = (290 \pm 90) \times 10^{-11}$$
 ~3 σ discrepancy

Hadronic LbyL

- Tested directly at e⁺e⁻ colliders at SLAC/DESY (80's)
- The first and only observation of $\gamma\gamma$ -> π^0 -> $\gamma\gamma$ done with Crystal Ball detector at DORIS II [Phys. Rev. D38 (1988) 1365]

• 0.1 GeV < m < 3 GeV region is probed</p>

• Measurement is used to derive partial widths, $\Gamma_{\pi 0/\eta/\eta' -> \gamma \gamma}$

LbyL in hadron-hadron collisions

- LbyL scattering can be tested in h-h collisions
- Formally, LbyL in h-h == ZZ -> γγ ZZ process
 - However, the initial photons have very small virtualities, eg Q² < 10⁻³ GeV² for LHC Pb-Pb
 - -> Quasi-elastic LbyL scattering
- Recent phenomenological studies/preditions for SM rates in pp/Pb-Pb collisions at the LHC

- [PRC 93 (2016) no.4, 044907]
- (Relatively) high m_{vv} can be probed here
 - ->proposed as a possible channel to study
 - Anomalous gauge couplings
 - Contributions from BSM particles (axions etc.)

Theory: $ZZ (\gamma \gamma) \rightarrow ZZ X$ scattering

[Fermi, Nuovo Cim. 2 (1925) 143]

[Weizsacker, Z. Phys. 88 (1934) 612] [Williams, Phys. Rev. 45 (10 1934) 729]

The cross section for **ZZ** ($\gamma\gamma$) \rightarrow **ZZ** X process is calculated using:

(1) Number of equivalent photons (EPA) by integration of relevant EM form factors:

$$n(b,\omega) = \frac{Z^2 \alpha_{em}}{\pi^2 \omega} \left| \int dq_{\perp} q_{\perp}^2 \frac{F(Q^2)}{Q^2} J_1(bq_{\perp}) \right|^2$$

$$Q^2 < 1/R^2 \quad \omega_{\text{max}} \approx \gamma/R$$

(2) EW $\gamma\gamma \rightarrow X$ (elementary) cross section

$$\sigma_{A_1 A_2(\gamma \gamma) \to A_1 A_2 X}^{\text{EPA}} = \iint d\omega_1 d\omega_2 n_1(\omega_1) n_2(\omega_2) \sigma_{\gamma \gamma \to X}(W_{\gamma \gamma})$$

LHC as a photon-photon collider

 Many intersting measurements can be done with pp/Pb-Pb beams of quasi-real photons at the LHC [PRD94 (2016) 3, 032011]

• pp collisions:

- + harder EPA spectrum ($\omega_{max} \sim \text{TeV}$)
- + large datasets available, O(10 fb⁻¹)
- large pile-up (multiple interactions per bunch crossing)
- hard to trigger on low-p_T objects

Pb-Pb collisions:

- + ZZ $(\gamma\gamma)$ cross-sections scale as Z⁴
- + gluonic cross-sections scale as ~A² (lower QCD background expected wrt pp)
- + low pile-up (<1%)
- Relatively soft EPA spectrum (ω_{max} ~100 GeV)
- Short LHC PbPb campaigns (compared to pp)

Testing Pb-Pb EPA at the LHC

- Non-resonant γγ -> I⁺I⁻ is a good benchmark process
- Studied by both ALICE and ATLAS
- Good agreement with Starlight (EPA + LO xs)

cf PHENIX measurement [PLB679 (2009) 321-329]

$m_{e^+e^-} [{\rm GeV/c^2}]$	$d^2\sigma/dm_{e^+e^-}dy _{y=0} \ [\mu b/(GeV/c^2)]$			
	data	STARLIGHT		
e^+e^- continuum [2.0,2.8]	$86 \pm 23 \mathrm{(stat)} \pm 16 \mathrm{(syst)}$	90		
e^+e^- continuum [2.0,2.3]	$129 \pm 47 (\mathrm{stat}) \pm 28 (\mathrm{syst})$	138		
e^+e^- continuum [2.3,2.8]	$60 \pm 24 (\mathrm{stat}) \pm 14 (\mathrm{syst})$	61		

The ATLAS detector

Data and MC samples

- Data: 34 runs from 2015 Pb+Pb campaign are used
- Total integrated luminosity: 0.48 nb⁻¹
 - •6% relative uncertainty

- MC simulated events
 - Signal MC sample to study event characteristics and correction factor
 - Several background MC samples are used for processes:

Object definition

Low-E_T photons need to be used

Photons

• E_T > 3 GeV, |η| < 2.37, photon PID based on three shower-shape variables is used:

	<u> </u>
E _{ratio}	Ratio of the energy difference associated with the largest and second largest energy deposits to the sum of these energies in the first layer of EM calo
f ₁	Fraction of energy reconstructed in the first layer with respect to the total energy of the cluster
W _{eta2}	Lateral width of the shower in the middle layer

- Charged-particle tracks (veto helps to reduce background)
 - $p_T > 100 \text{ MeV}, |\eta| < 2.5$

Trigger

- Dedicated trigger is used to select γγ -> γγ event candidates
 - Unprescaled in full 2015 data-taking period
 - Total E_T in calo at L1: **5 GeV-200 GeV**
 - Veto on signals in inner MBTS
 - Between 0-10 hits in the pixel detector
- Efficiency is estimated with γγ -> I⁺I⁻ events passing supporting trigger (ZDC-based)
 - L1_TE5 reaches 100% at (E_{Tcl1}+E_{Tcl2})=8 GeV
 - MBTS veto is estimated to be (98 ± 2)%
 - Pixel detector activity requirement is ~100% efficient with negligible uncertainty (low noise, very high hit reconstruction efficiency and low conversion probability of signal photons in the pixel detector)

Photon performance cross-checks

- $\gamma\gamma$ -> I⁺I⁻ (γ) events used to cross-check low-E_T photon performance
 - This includes: PID/reco efficiency, energy scale/resolution
- Example: yy -> ee events with hard-bremstrahlung photon are used to extract photon reconstruction efficiency (Tag-and-Probe)
- Tag selection:
 - \bullet ==1 identified electron with E_T>5 GeV
 - ==2 tracks, where p_T of track
 unmatched with electron < 2 GeV
- Probe selection:
 - Check how many times hard-brem photon is reconstructed
 - $E_T(y) \approx (E_T(e) second track p_T)$
- Photon reco efficiency extracted from data in agreement with MC

γγ -> γγ event characteristics

Event selection

- Signal event characteristics -> set of cuts for background reduction
 - == 2 photons with photon $E_T > 3$ GeV, $|\eta| < 2.37$ and $m_{\gamma\gamma} > 6$ GeV -> event preselection
 - N_{trk} = 0 -> almost no impact on signal MC events, significant reduction of $\gamma\gamma$ -> ee misID events
 - $p_T(\gamma\gamma)$ < 2 GeV -> fake photon background reduction (dominated by cosmic-ray muons inducing EM clusters), no impact on signal events
 - Diphoton acoplanarity < 0.01 -> to reduce/control CEP gg->yy background

Background

- γγ -> ee misID events
 - Occur when the electron track is not reconstructed or electron emits a hard bremsstrahlung photon

- N_{trk} = 0 cut is used to suppress $\gamma\gamma$ -> ee misID events
- \bullet ==2 photons with N_{trk} = 1(2) is a good control region for $\gamma\gamma$
 - -> ee misID background

Background

- Central exclusive yy production (CEP)
 - Similar exclusive topology
 - Relatively flat yy acoplanarity distribution (wrt signal) <- transverse momentum transferred by the photon exchange is much smaller than that due to the colour-singlet state gluons
- CEP gg -> yy is reducibe with yy acoplanarity cut
- Idea: define Aco < Aco_cut as a signal region and use events with Aco > Aco_cut for CEP gg->yy background normalization (due to large theory uncertainties)

Background

- Central exclusive yy production
- The Aco_cut value is optimized to retain high signal significance
 - Aco_cut = 0.01 is used

• CEP gg -> yy normalization:

$$f_{gg\to\gamma\gamma}^{\text{norm},b} = (N_{\text{data}}(\text{Aco} > b) - N_{\text{sig}}(\text{Aco} > b) - N_{\gamma\gamma\to e^+e^-}(\text{Aco} > b))/N_{gg\to\gamma\gamma}(\text{Aco} > b)$$

(b = 0.02 used for the central value; b = 0.01 and b = 0.03 for systematic checks)

• Final estimation: $f_{gg\to \gamma\gamma}^{\text{norm},b=0.02} = 0.5 \pm 0.3$

Other background

- Other background being considered (negligible)
 - Fake photons from hadronic processes: highly suppressed due to MBTS veto and $N_{\rm trk}$ = 0 requirements
 - -> studied using Minimum Bias events in data extrapolated to signal region
 - yy->qq (exclusive hadrons) -> MC estimation
 - CEP dimeson production (e.g. gg -> $\pi 0$ $\pi 0$ -> 4y, gg -> $\eta \eta$ -> 4y etc.) -> estimated with MC models to be below 10% of CEP gg -> yy in the same kinematic region
 - Other fake photons (mostly induced by cosmic-ray muons)
 -> estimated using ABCD method
 - - A events passing f_1 cuts on photons, p_T (yy) < 2 GeV
 - B events failing f_1 cuts on photons, p_T (yy) < 2 GeV
 - C events passing f_1 cuts on photons, p_T (yy) > 2 GeV
 - D events failing f_1 cuts on photons, p_T (yy) > 2 GeV
 - Results are cross-checked wrt other shower-shape variables and additional muon activity in MS

Systematic uncertainties

- Trigger efficiency uncertainty: dominated by yy ->I+I- event statistics passing supporting trigger
- Photon reco/PID efficiency uncertainty: large impact from limited statistics of FSR/hard-bremsstrahlung photon samples
- Photon energy scale: ±5%
- Photon energy resolution: ±15%
- Impact on the C-factor:

Source of uncertainty	Detector correction (C)		
	0.31		
Trigger	5%		
Photon reco efficiency	12%		
Photon PID efficiency	16%		
Photon energy scale	7%		
Photon energy resolution	11%		
Total	24%		

Results

- 13 events observed in data
- 7.3 signal events

 and 2.6 ± 0.7

 background

 events are expected

Selection	Data	Signal	$\gamma \gamma \rightarrow e^+e^-$	CEP $gg \rightarrow \gamma \gamma$	Hadronic fakes	Other fakes	Total expected
Preselection	105	9.1	74	4.7	6	19	113
$N_{\text{trk}} = 0$	39	8.7	4.0	4.5	6	19	42
$p_{\mathrm{T}}^{\gamma\gamma} < 2 \text{ GeV}$	21	8.5	3.5	4.4	3	1.3	21
Aco < 0.01	13	7.3	1.3	0.9	0.3	0.1	9.9
Uncertainty		1.5	0.3	0.5	0.3	0.1	

- Significance is estimated using profile likelihood method (asymptothic formulae)
- Observed significance: 4.4σ
 (3.8σ expected)

Results

- Fiducial cross section is estimated in the region:
 - $p_T(y) > 3 \text{ GeV}, |\eta(y)| < 2.4$
 - m_{yy} > 6 GeV, p_T(yy) < 2 GeV,</p>
 - Aco < 0.01
- $\sigma_{fid} = 70 \pm 20 \text{ (stat.)} \pm 17 \text{(syst.)} \text{ nb}$

$$\sigma_{\rm fid} = \frac{N_{\rm data} - N_{\rm bkg}}{C \times \int L dt}$$

- SM predictions:
 - 45 ± 9 nb[PRL 111 (2013) 080405]
 - 49 ± 10 nb[PRC 93 (2016) no.4, 044907]

A look forward

Example: expected sensitivity for ALP searches

[arXiv:1607.06083]

Summary

- A search for very rare QED process, light-by-light scattering, is performed in Pb+Pb collisions using 0.48 nb⁻¹ of 2015 data
- 13 events observed in data, where 7.3 signal events and 2.6 ± 0.7 background events are expected
 - Observed significance over background-only hypothesis: 4.4σ (3.8σ expected)
- Measured fiducial cross section: 70 ± 20 (stat.) ± 17(syst.) nb
 - SM predictions: 45 ± 9 nb [PRL 111 (2013) 080405],
 49 ± 10 nb [PRC 93 (2016) no.4, 044907]

More details available at: ATLAS-CONF-2016-111

Backup

Photon performance cross-checks

- γγ -> I⁺I⁻ γ (FSR) events are used for data-driven photon PID efficiency estimation
- Event selection:
 - Trigger: signal or supporting triggers are used
 - 2 OS tracks in back-to-back configuration, each with $p_{T} > 1$ GeV
 - $\Delta R(t\gamma) > 0.2$ to suppress e-bremsstrahlung photons
 - p_T(ttγ) < 1 GeV</p>

 Photon PID efficiency is estimated as a function of photon E_{T} and compared with MC

Photon performance cross-checks

- Photon energy scale/resolution is cross-checked using yy -> ee event properties
- Idea: measure $E_T(cl1) \pm E_T(cl2)$ distributions in yy -> ee process
- •Initial "theory" smearing very small $(\sigma_{pT(e1)-pT(e2)}$ below 0.03 GeV for $E_T(cluster) > 3$ GeV):
 - $\sigma_{\text{Et(cluster)}} \approx (\sigma_{\text{Et(cluster1)} \text{Et(cluster2)}})/\text{sqrt}(2)$
 - σ_{Et} / E_T ≈ 8% at low- E_T (< 10 GeV)
 - Data agrees with yy -> yy MC within 15% at low-E_T
- E_T(cluster1) + E_T(cluster2) distributions
 sensitive to photon energy scale
 - Et scale is conservatively varied by ±5% in MC
 - Simple chi2 test can be used to check the data/MC improvement
 - Data nicely covered by ±5% bands in MC

yy -> yy control distributions

yy -> ee control distributions

