

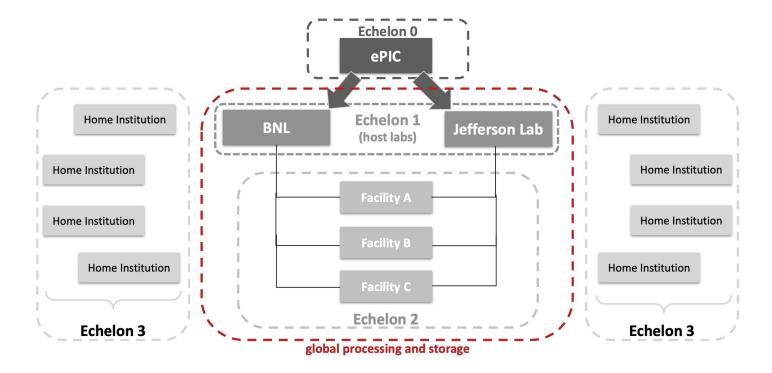
ePIC Streaming Computing Model

ePIC Software & Computing Report

The ePIC Streaming Computing Model

Marco Battaglieri¹, Wouter Deconinck², Markus Diefenthaler³, Jin Huang⁴, Sylvester Joosten⁵, Jefferey Landgraf⁴, David Lawrence³ and Torre Wenaus⁴ for the ePIC Collaboration

¹Istituto Nazionale di Fisica Nucleare - Sezione di Genova, Genova, Liguria, Italy.


²University of Manitoba, Winnipeg, Manitoba, Canada.
³Jefferson Lab, Newport News, VA, USA.

⁴Brookhaven National Laboratory, Upton, NY, USA.
⁵Argonne National Laboratory, Lemont, IL, USA.

Abstract

This document provides a current view of the ePIC Streaming Computing Model. With datataking a decade in the future, the majority of the content should be seen largely as a proposed plan. The primary drivers for the document at this time are to establish a common understanding within the ePIC Collaboration on the streaming computing model, to provide input to the October 2023 ePIC Software & Computing review, and to the December 2023 EIC Resource Review Board meeting. The material should be regarded as a snapshot of an evolving document.

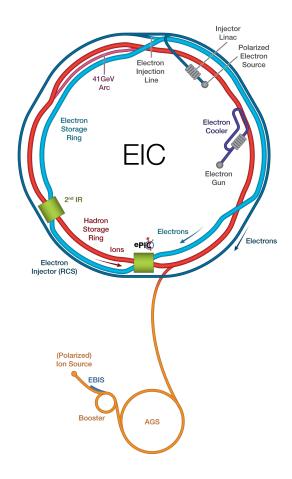
Report: Initial version of a plan set to develop over the next decade.

Echelon 0: ePIC experiment.

Echelon 1: Crucial and innovative partnership between host labs.

Echelon 2: Global contributions.

Echelon 3: Full support of the analysis community.


Towards a Quantitative Computing Model

Use Case	Echelon 0	Echelon 1	Echelon 2	Echelon 3
Streaming Data Storage and Monitoring	✓	✓		
Alignment and Calibration		✓	√	
Prompt Reconstruction		✓		
First Full Reconstruction		✓	√	
Reprocessing		✓	√	
Simulation		✓	√	
Physics Analysis		✓	√	✓
Al Modeling and Digital Twin		✓	√	

ToDo: Estimate compute resources for each use case

The EIC and Event Rates

- **Versatile machine**: versatile range of beam polarizations, beam species, center of mass energies.
- High luminosity up to $L = 10^{34}$ cm⁻² s⁻¹ = 10 kHz/µb.
 - The e-p cross section at peak luminosity is about 50 μb. This corresponds to a signal event rate of about 500 kHZ.
- The bunch frequency will be 98.5MHz, which corresponds to a bunch spacing of about 10ns.
 - For e-p collisions at peak luminosity, there will be in average 200 bunches or about 2µs between collisions (98.5MHz / 500 kHz).

Rate Estimates from MC

Details on rate estimates are available on the Wiki pages of the background task force:

E _e x E _p [GeV x GeV]	5 x 41	5 x 100	10 x 100	10 x 275	18 x 275	
Signal Rates						
e-p cross section [μb]	28	35	41	50	54	
e-p rates [kHZ]	12.5	129	184	500	83	
Background Rates						
e-beam gas rates [kHZ]	2182.0	2826.4	3177.3	3177.3	316.9	
p-beam gas rates [kHZ]	12.2	22	31.0	32.9	22.5	

Bounds for signal and background event numbers, assuming running 60% up-time for $\frac{1}{2}$ year = 9,460,800 s:

E _e x E _p [GeV x GeV]	Signal Events	Background Events
18 x 275	0.79×10 ¹²	3.21×10 ¹²
10 x 275	4.73×10 ¹²	30.38×10 ¹²

Rate Estimates from Streaming DAQ

The StreamingDAQ experts plan with:

- Data rate of in average 100 Gbit/s,
 - Based on rate estimates from MC (previous slide),
 - 10 Gbit/s for detector noise + 100 kbit/s per collision

Bounds for data rates:

E _e x E _p [GeV x GeV]	Signal Events	Background Events	Data Rate
18 x 275	0.79×10 ¹²	3.21×10 ¹²	52.2 Gbit/s
10 x 275	4.73×10 ¹²	30.38×10 ¹²	381.0 Git/s

- Event size of in average 100 kbit, including signal and background apart from detector noise,
 - Assuming that detector noise can be substantially reduced in early stages of processing.
 - Event sizes will be larger during commissioning and early data taking due to lower detector thresholds (400 kbit)
- Running 60% up-time for ½ year = 9,460,800 s:
 - Data rate of in average 100 Gbit/s results in 9.46×10^{12} events per year.

Compute Resource Estimates

https://docs.google.com/spreadsheets/d/1ApjIriu44DymP_i2T5O3W5_QgkXhVeinE6VRBZDHwSU/edit?gid=0#gid=0

