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LESSONS FROM CHARM

« The charm quark was
discovered here 50 years ago.
What can we learn from that
remarkable discovery?

« 3years before, in 1971, the first
hadron collider, CERN'’s
Intersecting Storage Rings
(ISR), began operation.

« It had a circumference of ~1 km,
collided protons with protons at
center-of-mass energy 30 GeV.

« During ISR’s 50" anniversary,
there were many fascinating
articles and talks by eminent
physicists.
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ISR’S LEGACY

*  “Enormous impact on accelerator physics, but sadly little
effect on particle physics.” — Steve Myers, talk at “The 50th
Anniversary of Hadron Colliders at CERN,” October 2021.

« “There was initially a broad belief that physics action would
be in the forward directions at a hadron collider.... ltis
easy to say after the fact, still with regrets, that with an
earlier availability of more complete... experiments at the
ISR, CERN would not have been left as a spectator during
the famous November revolution of 1974 with the J/y
discoveries at Brookhaven and SLAC .” — Lyn Evans and
Peter Jenni, “Discovery Machines,” CERN Courier (2021).

« Bottom line: The collider was creating charm quarks, but,
based on theoretical prejudice, experimentalists focused
on the forward region and so missed them.

« Could we be making the same mistake now?
* If so, can we fix it?

* Could there be another November Revolution waiting for

us at the LHC?
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LIFETIME OF THE LHC

Since their invention 70 years ago, particle colliders have been a steady
source of discoveries, and the LHC is the latest example.

The LHC started running in
2010. Itis scheduled to run
until the 2040s, but still has
a long way to go
— Middle-aged in terms of
years

— But a 4th grader in terms of
integrated luminosity

Are we using the LHC to its
full potential? If not, what
can we do to enhance its
discovery prospects?
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THE PARTICLE LANDSCAPE
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FORWARD PHYSICS

« |In 2017, we realized that the large LHC detectors, while beautifully
optimized to discover new heavy particles, are also almost optimally
configured not to find new light particles.

Feng, Galon, Kling, Trojanowski (2017)

« Heavy particles (W, Z, t, h, ...) are produced at low velocity and decay
roughly isotropically to other particles.

« But high-energy light particles are dominantly produced in the forward
direction and escape through the blind spots of these large detectors.
— This is true for all known light particles: pions, kaons, D mesons, all neutrinos.

— Itis also true for many proposed new particles, especially those motivated by

neutrino mass and dark matter. De Rujula, Ruckl (1984)

« These blind spots are the Achilles heels of the large LHC detectors.
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LIGHT PARTICLES AT THE LHC
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Most searches have focused on

processes with ¢ ~ fb, pb.

But the total cross section is

Otot ~ 100 mb and most of it is

typically treated as useless.
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Consider pions (decays to v, BSM).

Enormous event rates. Typical py ~
250 MeV, but many with p ~ TeV within
1 mrad (n > 7.6) of the beamline.
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DETECTING FORWARD PARTICLES

» To capture the enormous forward flux, we need to detect particles that
are produced in the forward direction along the beamline.

« Problem: we can’t just put the detector there: they will block the
protons from coming in.

« Solution: the LHC is a circular collider! If we go far enough away, the
LHC proton beam will curl away, while all the light, weakly-interacting
particles we are looking for will go straight.
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MAP OF LHC
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THE FORWARD REGION

e Beam collision axis passes
| through 100 m of rock, emerges in ;;13 g
? tunnel T112, 480 m from ATLAS [
=

dark matter, new particles could be
streaming through this tunnel!

Beam collision axis: LHC beamline
; —
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HOW BIG DOES THE DETECTOR HAVE TO BE?

e Momentum: — 250 MeV
S

1 TeV

« Space: 12 cm
480 m

|

* The opening angle is 0.2 mrad (the moon is 7 mrad).
Even 480 m away, most of the signal passes through
an 8.5” x 11” (A4) sheet of paper.

» Neutrinos and many new particles are therefore
much more collimated than shown below, motivating
a relatively small, fast, and inexpensive experiment at
the LHC: the ForwArd Search ExpeRiment (FASER).
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FASER AND FASERv TIMELINE
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FASER COLLABORATION
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PREPARATION OF THE FASER LOCATION

« The nominal beam collision axis was located to mm accuracy by the
CERN survey department. (In fact, it goes moves around by several cm,
depending on the beam crossing angle and orientation.) To place
FASER on this axis, a trench was required to lower the floor by 46 cm.

« The trench was completed by an Italian firm just hours before COVID
shut down CERN in March 2020.

Spring 2020 Summer 2020
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FASER INSTALLATION
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THE FASER DETECTOR

« Design challenges: small (no room), low maintenance (no access), fast (no time).
— Size: Total length ~ 5 m, decay volume: R =10cm, L=1.5m.
— Magnets: 3 permanent dipoles (Halbach design), 0.57 T, deflect charged particles in y.
— Tracker: composed of 4 stations x 3 layers x 8 mod. = 96 ATLAS SCT modules.
— Calorimeter: composed of 2 x 2 LHCb ECAL modules.
— Scintillators: 4 stations, each 1-2 cm thick, >99.999% efficient. 4-layer veto ~ (107°)* ~10720,

— FASERv: 770 interleaved sheets of tungsten + emulsion. 1 m long, 1.1 ton total mass. Micron-level
spatial resolution, but no timing. Becomes over-exposed from muons, must be replaced after ~30 fb-2.

* The experimental environment: 88 m underground, shielded from ATLAS by 100 m of rock -
extremely quiet. Trigger on everything, ~kHz trigger rate dominated by muons from ATLAS.

Front Scintillator

veto system

FASER Collaboration < g TR
(220711427) Tracking spectrometer stations Scintillator J1Y, 1&7\ |

Electromagnetic
Calorimeter

FASERvV emulsion
detector

Interface
Tracker (IFT)

Trigger / timing y
scintillator station

Magnets Z

Trigger / pre-shower
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https://arxiv.org/abs/2207.11427

FASER DATA TAKING 2022 - PRESENT

 FASER was constructed in
18 months. We saw our first
cosmic ray event on 18
March 2021.

« After LS2 from 2018-2021,
the LHC started running
again in Jul 2022, and again
in 2023 and in 2024.

*  FASER began recording
data immediately.
— Recorded 97% of delivered
luminosity

— Largely automated: no
control room, 2 shifters
controlling and monitoring
the expt from their laptops
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COLLIDER NEUTRINOS
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« Neutrinos are the least
understood of all known
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« But before FASER, neutrinos produced at a particle collider had never
been directly observed

— Conventional wisdom: neutrinos interact very weakly so cannot be detected.

— The reality: the highest energy ones, which are most likely to interact, pass

through the blind spots of existing detectors.
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COLLIDER NEUTRINO SEARCH

* Neutrinos produced at the ATLAS IP travel 480 m and pass through
FASERv. Occasionally, they can interact through v, N — uX, producing a
high-energy muon, which travels through the rest of the detector.

FASERv

Yy scintillator IFT Veto scintillator Timing scintillator Tracking Spectrometer stations Pre-shower
L tati station station scintillator station
7 station
v, | Ny - P .. e
-~ S e l s I -
FIASLos I e - _ _ I

. Calorimeter
FASERv tungsten/emulsion detector [ i Magnets & decay volume

FASER Collaboration (2303.14185, PRL)

- The signal is no charged particle passing through the upstream veto
scintillators, hits in the downstream scintillators, and a single charged
track, >100 GeV, in the central region of downstream trackers.

- Leading backgrounds from neutral hadrons produced in the rock, muons
that enter from the side, or beam 1 background contribute < 1 event.

- Expect 151 + 41 events from simulations, with the large uncertainty
arising from the poorly understood flux of forward hadrons.
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COLLIDER NEUTRINO RESULTS

 After unblinding, we found
153 signal events.

« 1st direct detection of
collider neutrinos.
— Signal significance of ~160
— Muon charge > vand v
— These include the highest
energy v and v interactions

ever observed from a
human source

* Following the FASER
observation, SND@LHC, a
complementary experiment
in the “other” forward
direction, discovered an
additional 8 neutrinos.
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https://arxiv.org/abs/2303.14185

LOCATION, LOCATION, LOCATION

FASER

“Tabletop,” 18 months,
~$1M

153 neutrinos

All previous
collider detectors

Building-size, decades,
_ _ _ ~$1B
16c discovery, opening a new window
at the high energy frontier 0 neutrinos

15 Oct 2024 Feng 26



DISCOVERY OF COLLIDER NEUTRINOS

olhder neutrinos

Physics ¢« CERN
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NEUTRINOS IN FASERv

- At the front of FASER is FASERv, a 1.1-ton block of interleaved tungsten
and emulsion plates. The first neutrino analysis treated this as a big
block of matter, but the emulsion provides far more detailed information.

- Emulsion is essentially old-fashioned photographic film, has unmatched
spatial resolution (~0.5 microns).

ik
: - Japan CERN Japan
This cycle is Emulsion film Detector
repeated for each production assembling Exposure Development Readout
FASERv exposure
Kinematical Vertex Track Alignment
analysis reconstruction reconstruction 9

=  F |
o = 6
C | -
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NEUTRINOS IN FASERv

With the emulsion, we have now observed the first collider electron neutrinos,
including the “Pika-v” event, the highest energy (1.5 TeV) electron neutrino ever
SN seen from a lab source.

Side View

615 pm inside tungs

L4 o
=

Single track for 2X,
Shower max @ 7.8X,
B. =11 mrad to beam

175° between e & rest

FASER Collaborafion (2403.12520)
100 um


https://arxiv.org/abs/2403.12520

TEV NEUTRINO CROSS SECTIONS

» Following these discoveries, we can then move on to studies, including
the first measurement of neutrino cross sections at TeV energies.

* Results are consistent with SM DIS predictions.
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FASER Collaboration (2403.12520)

«  These measurements use only 1.7% of the data collected in 2022 and
2023. Much more to come; we expect to triple the world’s supply of tau
neutrinos, identify the first anti-tau neutrino, ....
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NEW PARTICLE SEARCHES

 FASER can also look for new light and weakly-interacting particles.

« For example: suppose there is a dark sector that contains dark matter X
and also a dark force: dark electromagnetism.

« The result? Dark photons A’ , like photons, but with mass m,,, couplings
suppressed by e.

Holdom (1986)

» For low ¢, dark photons are long-lived particles (LLPs), can be produced
In ATLAS, pass through rock and magnetic fields unhindered, and decay
in FASER.
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DARK PHOTON SIGNAL

* Focus on masses in the 10-100 MeV range.

*  Produced through meson decay n/n — A’y or “dark bremsstrahlung”
pp — ppA'.

+ Travel straight and unimpeded through 480 m of rock/concrete.

« Then decay through A" - e*e™.

Tracker Tracker Tracker Tracker

Decay volume
) I I I
Magnet Magnet Magnet

Veto Veto Timing Preshower

Calorimeter

« The signal is no charged particle passing through the upstream veto
scintillator detectors, followed by two very energetic (100s of GeV)
charged tracks in downstream trackers. Tracks are very collimated,
but magnet splits them sufficiently to be seen as 2 tracks in trackers.
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DARK PHOTON RESULTS

- After unblinding, no events seen,
FASER sets limits on previously
unexplored parameter space.

» First new probe of the parameter
space favored by dark matter from
low coupling since the 1990’s.

* Bodes well for the future
— Background-free analysis

— Started probing new parameter
space in the first day of running

— Ended up ~100 times more sensitive
than previous experiments

— Improvements in analysis and 40
times more data to come
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https://arxiv.org/abs/2308.05587

ALP-W SEARCH RESULTS

« Can also look for LLPs with purely photonic final states. E.g., ALP-Ws

production
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) 10° SE—— NS
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FASER is approved to run through Run 4 (2030-33), with hardware upgrades, §

improvements in analysis. We will be testing many other new ideas, e.g., other
new force carriers (U(1)g.., U(1)g, protophobic), ALP-y, ALP-g, light-shining-
through-walls axions, dark Higgs bosons, sterile neutrinos, light neutralinos,

inflatons, quirks, etc., all with world leading sensitivities.
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FORWARD PHYSICS FAC
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https://cds.cern.ch/record/2851822

THE FACILITY

* Acylindrical cavern
surrounding the LOS,
620-695 m west of the
ATLAS IP.

« 75 mlong, 12 min
diameter, covers n > 5.1.

 Class 4 cost estimate: 35 Bud, Magazinik, Pal, Osborne, et al. CERN CE (2024)

MCHF.
Proposed Civil Engineering Schedule

« Can be constructed
independently of the LHC,
does not disrupt LHC
running.

 Timeline: construct in
LS3/early Run 4, physics
starts in late Run 4. o very ey tage ot

jﬂ( Design must be frozen before technical design can begin
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FPF EXPERIMENTS

« At present there are 4 experiments being designed for the FPF

FASER2: magnetized spectrometer for BSM searches

FASERv2: emulsion-based neutrino detector

FLArE: LArTPC neutrino detector

FORMOSA: scintillator array for BSM searches (successor to MilliQan)

« The total of core costs for the 4 experiments is ~40 MCHF.

15 Oct 2024
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FPF EXPERIMENTS

 The FPF experiments will deliver a huge jump in physics reach relative to the
existing experiments:
— 10,000 times greater (decay volume * luminosity) for BSM searches.
— Will detect miilions of TeV neutrinos, ~1000 neutrinos/day!

— Highly flexible program: In the event of a discovery at FPF or elsewhere, FPF

experiments will be able to adapt, measure the properties of the new particles, explore
possible connections to dark matter, dark sectors.

« FASERZ2, FASERv2, FORMOSA are based on experience with the corresponding
“pathfinder” experiments (FASER, FASERv, milliQan).

* FLArE does not benefit from a pathfinder experiment, but there has been
Impressive progress, led by BNL.

15 Oct 2024 Feng 39



PHYSICS AT THE FPF

« The FPF at the HL-LHC
will have many unique
capabilities:

sterile
neutrinos

— New physics in

axion-like

. . . lepton
neutrino properties: dark Particles universality
photons V non- &

neutrino blind -
neutrino factory: 106
neutrinos at the
highest human-
made energies ever.

irk standard ttaf‘
quirks AC interactions neutrinos
neutrino
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nuclear
PDFs

dark
sectors
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scattering X X
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NEUTRINOS AT THE FPF

 The FPF experiments will
see 10° v,, 10°v,, and
10* v, interactions at TeV
energies. The last chance e
to probe this in a
controlled environment for 1]
at least 50 years.

E, (x10¥cm?/GeV)
°
>

o/l

* Neutrinos are produced by Ve + Ve interactions at FLARE
forward hadron production: F]HF
]_04 - v lysis @by -
n,K, D, .... Dependence on ‘
E, n will inform kaon production - -
) ) enhanced -2
— Astroparticle physics: strangeness -
muon puzzle, ...
— QCD: pdfsatx ~1071, x
~ 1077, intrinsic charm,
small-x gluon saturation,

| .
] charm production
small-x gluon saturation

103 1 r=l

# of neutrino interactions [1/bin]

— Neutrino oscillations: v I

with Am2~ 103 eV? 102 g
neutrino energy [GeV]
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ENHANCEMENT OF HIGH P; SEARCHES

 The FPF will provide
new constraints on

HLLHC, /s = 14 TeV Baseline (PDF4LHC21)

pdfs that will sharpen 4 Baseline + DISGFPF (stat)
studies at ATLAS and
CMS. : g
hiW= [ =
 For example, W, Z, o =
and Higgs boson hjj (VBF) —k
studies. . .
v 12— : +
« Will also remove .
degeneracies betw_een W+z n
pdfs and new physics . . . . .
(“fitting away new — -2 -1 0 1 2
physics”), extending dpara(pp = X) (%)
the reach for new
particle searches (e_g_’ Cruz-Martinez, Fieg, Giani, Krack,

Makela, Rabemananjara, Rojo (2023)
~10 TevV W', Z").
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UNIQUE DISCOVERY OPPORTUNTIES

FPF experiments have the potential to discovery BSM physics that cannot be

seen anywhere else. Many examples:

Millicharged particles: a completely generic possibility motivated by dark matter,
dark sectors. Currently the target of the MilliQan experiment, located at the LHC
near the CMS experiment in a “non-forward” tunnel.

Can be explored at the FPF with
both FLArE and FORMOSA, a
dedicated experiment in the
forward region with much
greater sensitivity for a wide
range of masses from 10 MeV to
100 GeV.

Currently being
iInvestigated
with the
FORMOSA
Demonstrator
behind FASER.

15 Oct 2024
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DARK MATTER

In the last few decades, there has been my

an intense effort to detect dark matter my —— ) X1 = Xo¥

through non-gravitational couplings, all A= BAm _ mi—mo
yielding null results. T mg Mg
One generic possibility that is infamously o0 _ iilo‘“’xOF
hard to detect: inelastic dark matter, 0 Am '

where there are two nearly-degenerate
dark states with off-diagonal couplingsto 10
the SM.

inelastic dipole dark matter
my, =1.001m,,

. BaBaR

These generically lead to long-lived
particles, but with soft decay products,
but these are highly boosted to
observable levels at the FPF.

103§

DM relic target

Bottom line: the FPF can discover DM (or 104

any compressed spectrum), which cannot
be seen anywhere else (ATLAS/CMS,
SHIiP and other fixed target expts, direct 10744 : : : : !
and indirect DM searches, ...) DM mass m, [GeV]

magetic moment g, [Gev™!]

FASERZ
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QUIRKS

« There may be another strong (non-Abelian) force.

* Quirks are particles charged under both the SM and
another strong force, with m > A.

T o

* Quirks can be pair-produced at the LHC, but then are
bound by a color string, oscillate about their center-of-mass
and travel down the beamline.

10°

(¥202) 18d ‘IN ‘oerq ‘17 ‘Bua4

« By looking for 2 coincident slow or E N
delayed tracks (out of time with the Cwlg] | = |
bunch crossing), FPF experiments can d I e |
discover quirks with masses up to ~TeV, %104. T AR
as motivated by neutral naturalness s
solutions to the gauge hierarchy E’W, ‘ L
problem. : | T corplanar
S 2] 'L—“\
 Unique discovery potential at the FPF: 1 out J
very challenging at ATLAS/CMS, | Tme) HscP
impossible at fixed target experiments. 0 0.2 0.4 0.6 0.8 :

quirk mass mg [TeV]
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SUMMARY

« The forward region is a treasure trove of interesting physics.

« Collider neutrinos at TeV energies, with implications for neutrino
properties, QCD, astroparticle physics, and high py physics.

« Opportunities for breakthrough discoveries of light (and also heavy),
weakly-interacting BSM particles, including many motivated by dark
matter.

« FASER has shown that this dataset can be mined by small, fast,
and inexpensive detectors. Many more results coming in the next
few days, months, and years.

« The Forward Physics Facility will enable the LHC to fully realize
its physics potential before it shuts down in the 2040s.

see the FPF status report for EPPSU, on arxiv soon
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