

Experimental Overview of ePIC for BSM

Michael Nycz Uncovering New Laws of Nature at the EIC November 20-22 2024

Iectron Beam: 5-18 Gev Ion: 40, 100-275 GeV

Thank you to the many people I borrowed / adapted slides from

- What this talk won't be: an exhaustive list of the BSM possibilities at the future EIC with ePIC
- Will hope to give a (broad) overview and capabilities of the ePIC detector that may be helpful in future studies

My apologies if I missed something critical or overlooked a topic you had hoped to see

The Electron-Ion Collider Physics

"The Electron-Ion Collider (EIC) will address some of the most fundamental questions in science regarding the visible world, including"

Origin of nucleon spin

How are quark & gluons distributed in momentum and space

What are the emergent properties of dense system of gluons

The Electron-Ion Collider

- High luminosity machine > $(10^{33} - 10^{34} \text{ cm}^{-2} \text{ s}^{-1})$
- Large center-of-mass energy range
 √21-140 GeV
- Polarized e⁻, protons and light ions beams
 > ≥70%
- Ions beam from deuteron to heavier nuclei
 - \succ Gold, lead, or uranium

The Electron-Ion Collider

- High luminosity machine > $(10^{33} - 10^{34} \text{ cm}^{-2} \text{ s}^{-1})$
- Large center-of-mass energy range
 √21-140 GeV
- ◆ Polarized e⁻, protons and light ions beams
 > ≥70%
- Ions beam from deuteron to heavier nuclei
 - ➢ Gold, lead, or uranium

Complement a BSM (and Electroweak) physics program

The Standard Model

Standard Model of Elementary Particles

<u>Puzzles</u>

- Neutrino Flavor Oscillations $> m_v \neq 0$
- Baryon Asymmetry
- Dark Energy
- Dark Matter
- Higgs Mass Hierarchy Problem

Testing The Standard Model

Testing The Standard Model

The ePIC Detector

- → Large η coverage (-3.5 < η < 3.5)
- → High precision silicon detectors for tracking
- → Excellent calorimeters for measuring energy of EM particle showers
- → Extended PID for hadron ID

The ePIC Detector: Tracking

- High precision low mass tracking
- High spatial-resolution & efficiency and large-area coverage
- High pixel granularity
- Low material budget at large η

The ePIC Detector: Tracking

Silicon Vertex Tracker (SVT)

- ~6 µm point resolution
- 3 Inner Barrels: ITS3-curved wafer-scale sensor, 0.05% X/X0
- 2 Outer Barrels: ITS3-based sensors (EIC-LAS), 0.25/0.55% X/X0
- 5 disks (forward/backward), EIC-LAS, 0.25% X/X0

AC-coupled Low Gain Avalanche Diode (AC-LGAD)

- 30 µm + 30 ps resolutions
- Barrel TOF 0.05 x 1 cm strip, 1% X/X0
- Forward TOF: 0.05 x 0.05 cm pixel, 5% X/X0

Micro Pattern Gas Detectors (MPGD)

- 10 ns & 150 µm resolutions
- 2 GEM-µRWELL (hybrid) Endcaps
- 1 Cylindrical Micromegas Inner Barrel
- 1 Thin-gap GEM-µRWELL (hybrid) Outer Barrel

The ePIC Detector: Tracking

The ePIC Detector: Tracking Requirements

η range	Momentum Resolution	Spatial Resolution
Backward (-3.5 to 2.5)	~0.10% × p ⊕ 2.0%	~ 30/pT μ <i>m</i> ⊕ 40 μ <i>m</i>
Backward (-2.5 to -1.0)	~0.05% × p ⊕ 1.0%	~30/pT μ <i>m</i> ⊕ 20 μ <i>m</i>
Barrel (-1.0 to 1.0)	~0.05% × p ⊕ 0.5%	~20/pT μ <i>m</i> ⊕ 5 μ <i>m</i>
Forward (1.0 to 2.5)	~0.05% × p ⊕ 1.0%	~30/pT μ <i>m</i> ⊕ 20 μ <i>m</i>
Forward (2.5 to 3.5)	~0.10% × p ⊕ 2.0%	~30/pT μ <i>m</i> ⊕ 40 μ <i>m</i>

The ePIC Detector: **PID**

PID Requirements

- e^{-} from photons: (4 π coverage) in tracking \rightarrow
- \rightarrow e^{-} from charged hadrons: Tracking & calorimetry
- Charged pions, kaons, & protons separation at track level: Cherenkov \rightarrow

The ePIC Detector: **PID**

PID Requirements

- → e^{-} from photons: (4 π coverage) in tracking
- → e^{-} from charged hadrons: Tracking & calorimetry
- → Charged pions, kaons, & protons separation at track level: Cherenkov
- ♦ Needs to be done over wide range of momenta and rapidity
 - > Requires technologies which are complementary

The ePIC Detector: PID

The ePIC Detector: Calorimetry

The ePIC Detector: Calorimetry

The ePIC Detector: Calorimetry

The ePIC Detector: Far Forward and Far Backward

The ePIC Detector: Far Forward and Far Backward

Detector	Acceptance	
Zero-Degree Calorimeter (ZDC)	$\theta < 5.5 \operatorname{mrad} (\eta > 6)$	
Roman Pots (2 stations)	$0.0 < \theta < 5.0 \text{ mrad } (\eta > 6)$	
Off-Momentum Detectors (2 stations)	$\theta < 5.0 \operatorname{mrad} (\eta > 6)$	
B0 Detector	$5.5 < \theta < 20.0 \text{ mrad} (4.6 < \eta < 5.9)$	

Potential BSM Physics: Charged Lepton Flavor Violation

Charged Lepton Flavor Violation: Decay Channel(s)

 $\frac{1 \operatorname{Prong}}{\tau \rightarrow \mu \overline{v}_{\mu} v_{\tau}}$

- 1. Larger branching ratio ~ 17%
- 2. Suppression of SM background
- 3. Needs (good) μ identification

<u>3 Prong (from $e \rightarrow \tau$)</u> $\tau \rightarrow \pi^{-}\pi^{+}\pi^{-}\nu_{\tau}$

1. Identification is easier than 1 prong channel

Charged Lepton Flavor Violation: 1 Prong Decay Channel

Charged Lepton Flavor Violation: 1 Prong Decay Channel

<u>1 Prong</u>

$$\tau \rightarrow \mu \overline{\nu}_{\mu} \nu_{\tau}$$

- 1. Larger branching ratio ~ 17%
- 2. Suppression of SM background
- 3. Needs (good) μ identification

Preliminary (Andrew Hurley)

- No dedicated muon detector
 - Limit tracks to those MIPs in calorimerter
- Utilize E/p in both barrel calorimeters

Charged Lepton Flavor Violation: 1 Prong Decay Channel

<u>1 Prong</u>

- $\tau \rightarrow \mu \overline{\nu}_{\mu} \nu_{\tau}$
- 1. Larger branching ratio ~ 17% \rightarrow
- 2. Suppression of SM background
- 3. Needs (good) μ identification

- → Momentum scan @ θ =90
 - Focus for $e \rightarrow \tau$
 - ♦ |p|>10 GeV
 - Log-likelihood method

Preliminary (Andrew Hurley)

- No dedicated muon detector
 - Limit tracks to those MIPs in calorimerter
- Utilize E/p in both barrel calorimeters

Displace Hidden Vectors

- Production of massive light vector boson A'
 - $\succ e^{-}A_{Z} \rightarrow e^{-}A_{Z}A'$
- Assumed zero background
 - Background in Far Background needs to estimated

Hooman Davoudiasl, Roman Marcarelli, and Ethan T. Neil

Backwards physics - B0 is in the wrong place!

- eA collisions can be leveraged to significantly improve the chances to observe BSM effects (Z² scaling)
- Better estimations are needed for DCAs with/without tracking for ePIC
- Evaluation of backgrounds in the backwards region will be critical to ensure we can make this measurement

From Ciprian Gal Workshop Summary

INT Workshop EW and BSM physics at the EIC (2024)

Displace Hidden Vectors

- → There are many interesting BSM physics topics to explore for the future EIC!
- → The ePIC detector is designed to maximize its physics reach
- → Many completed and ongoing BSM impact studies with ePIC
 - <u>R. Boughezal et al., Neutral-current electroweak physics and SMEFT studies at the EIC, Phys.</u> <u>Rev. D</u>
 - J. Zhang et. al, Charged Lepton Flavor Violation Study at the EIC, in Electroweak and BSM physics at the EIC
 - R. Boughezal, D. de Florian, F. Petriello, and W. Vogelsang, Transverse spin asymmetries at the EIC as a probe of anomalous electric and magnetic dipole moments, Phys. Rev. D 107, 075028 (2023)
 - Hooman Davoudiasl, Roman Marcarelli, and Ethan T. Neil, Displaced signals of hidden vectors at the Electron-Ion Collider
- → Future work
- → Interested in Electroweak & BSM physics at the EIC
 - Electroweak & BSM working group (Ciprian Gal and Juliette Mammei)
 - eic-projdet-inclusive-l@lists.bnl.gov & eic-projdet-bsmew-l@lists.bnl.gov

Thank You

The ePIC Detector: EM Calorimeter Detectors

The ePIC Detector: Hadron Calorimeter Detectors

