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Outline
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• The quest for new physics at the low-energy precision / intensity frontier  — landscape

• Shedding light on the origin and nature of neutrino mass (with an eye towards the EIC)

• Lepton flavor violation 

• Lepton number violation 



The quest for new physics at
 the precision / intensity frontier



• The SM is remarkably successful but it’s likely incomplete            

New physics: why?

No Neutrino Mass,  no Baryon Asymmetry,  no Dark Matter,  no Dark Energy                        
Origin of flavor, Strong CP problem, Unification,…

Addressing these shortcomings & puzzles requires new physics

X

4

 Credit: X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScI; Magellan/U.Arizona/
D.Clowe et al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.

 Credit: Fermilab



Λ

vEW

Unexplored

New physics: where?

~ 250 GeV
Standard 

Model
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• Where is the new physics? Is it Heavy? Is it Light & weakly coupled?

1/Coupling 



Λ

vEW

Energy Frontier
(direct access to UV new physics)

New physics: how?

6

1/Coupling 

• Two complementary paths to search for new physics 
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1/Coupling 

Λ

vEW

Precision Frontier
(indirect access to UV d.o.f)

New physics: how?
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Imprints of  heavy BSM physics:  
new local interactions suppressed 

by inverse powers of mass   

Low Energy Frontier

How do BSM particles / interactions  affect low energy dynamics?

• Two complementary paths to search for new physics 
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1/Coupling 

Λ

vEW

Precision Frontier
(indirect access to UV d.o.f)

New physics: how?

(direct access to light d.o.f.)

A’ χ

χ

• Two complementary paths to search for new physics 

“Portals”:  leading SM interactions with 
the dark sector (though lowest 

dimensional SM singlet operators)
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1/Coupling 

Λ

vEW

Precision Frontier
(indirect access to UV d.o.f)

New physics: how?

(direct access to light d.o.f.)

A’ χ

χ

• Two complementary paths to search for new physics 

• Both frontiers needed to probe the particle content & symmetries of LBSM and address the open questions 
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1/Coupling 

Λ

vEW

MGUT

20 TeV

1000 TeV

• Three classes,  pushing the boundary in qualitatively different ways and at different mass scales

BSM probes @ the Precision / Intensity  Frontier
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1/Coupling 

Λ

vEW

MGUT

20 TeV

1000 TeV

• Three classes,  pushing the boundary in qualitatively different ways and at different mass scales

1.  Searches for rare or SM-forbidden processes that probe approximate or exact symmetries of the SM 
(L, B, CP, Lα):   0νββ decay,  proton decay,   EDMs,  LFV (μ→e conversion, ep→τX, …),                                           

…

BSM probes @ the Precision / Intensity  Frontier

Sensitive to very high mass scale. 

Connection to Sakharov conditions for baryogenesis (LNV, BNV, CPV)  & 

 origin and nature of neutrino masses (LNV, LFV)
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1/Coupling 

Λ

vEW

MGUT

20 TeV

1000 TeV

• Three classes,  pushing the boundary in qualitatively different ways and at different mass scales

1.  Searches for rare or SM-forbidden processes that probe approximate or exact symmetries of the SM 
(L, B, CP, Lα):   0νββ decay,  proton decay,   EDMs,  LFV (μ→e conversion, ep→τX, …),                                           

…

BSM probes @ the Precision / Intensity  Frontier

2.  Precision tests of SM-allowed processes:                                    
β-decays (mesons, neutron, nuclei), PV electron scattering, muon g-2, 

… 

Can detect the footprints of mutli-TeV force 
mediators as well as light mediators
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1/Coupling 

Λ

vEW

MGUT

20 TeV

1000 TeV

• Three classes,  pushing the boundary in qualitatively different ways and at different mass scales

1.  Searches for rare or SM-forbidden processes that probe approximate or exact symmetries of the SM 
(L, B, CP, Lα):   0νββ decay,  proton decay,   EDMs,  LFV (μ→e conversion, ep→τX, …),                                           

…

BSM probes @ the Precision / Intensity  Frontier

2.  Precision tests of SM-allowed processes:                                    
β-decays (mesons, neutron, nuclei), PV electron scattering, muon g-2, 

… 

3.  Searches / characterization of light and weakly coupled particles:  
active ν’s,  sterile ν’s,  dark sector particles and mediators,  axions, 

… 

Probe neutrino properties, dark matter & dark sectors 
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active ν’s,  sterile ν’s,  dark sector particles and mediators,  axions, 

… 

The EIC is an intensity frontier machine and 
can play a role in all three classes 
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• Three classes,  pushing the boundary in qualitatively different ways and at different mass scales

1.  Searches for rare or SM-forbidden processes that probe approximate or exact symmetries of the SM 
(L, B, CP, Lα):   0νββ decay,  proton decay,   EDMs,  LFV (μ→e conversion, ep→τX, …),                                           

…

BSM probes @ the Precision / Intensity  Frontier

2.  Precision tests of SM-allowed processes:                                    
β-decays (mesons, neutron, nuclei), PV electron scattering, muon g-2, 

… 

3.  Searches / characterization of light and weakly coupled particles:  
active ν’s,  sterile ν’s,  dark sector particles and mediators,  axions, 

… 

The EIC is an intensity frontier machine and 
can play a role in all three classes 

Will discuss  LFV & LNV                  
   with an eye towards the EIC



Probing the origin of neutrino mass

H. Murayama



Neutrino mass & new physics
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• Massive neutrinos provide the only laboratory-based evidence of physics beyond the Standard Model

Conserves L=Le+Lμ+Lτ 

Violates L (ΔL=2)
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No neutrino 
mass

The Standard Model

 ΔL=2

 ΔL= 0?

• Lorentz invariance ⇒  two options for massive neutrinos: Dirac or Majorana



Neutrino mass & new physics
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• Massive neutrinos provide the only laboratory-based evidence of physics beyond the Standard Model

• Lorentz invariance ⇒  two options for massive neutrinos: Dirac or Majorana

+ …

• Models of ν mass typically introduce new degrees of freedom & interactions 

Neutrino mass and new physics

14

• ν mass requires introducing new degrees of freedom 

• Violates Le,μ,τ,  conserves L 
L = Le + Lμ +  Lτ 

Dirac mass

x

• Violates Le,μ,τ  and L  (ΔL=2)    

Majorana mass

…
x x

MR-1

x
Higgs 
triplet

x

…

Neutrino mass and new physics
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• ν mass requires introducing new degrees of freedom 

• Violates Le,μ,τ,  conserves L 
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Dirac?
Majorana?
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• ν mass requires introducing new degrees of freedom 

• Violates Le,μ,τ,  conserves L 
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Dirac mass
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• Violates Le,μ,τ  and L  (ΔL=2)    

Majorana mass

…
x x

MR-1
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Higgs 
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Are neutrinos Dirac or 
Majorana fermions? 

    Lepton Number  Violation     

(0νββ,  meson and lepton 
decays,  collider processes, …)  

Dirac?
Majorana?
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• ν mass requires introducing new degrees of freedom 

• Violates Le,μ,τ,  conserves L 
L = Le + Lμ +  Lτ 

Dirac mass

x

• Violates Le,μ,τ  and L  (ΔL=2)    

Majorana mass

…
x x

MR-1

x
Higgs 
triplet

x

…

Are neutrinos Dirac or 
Majorana fermions? 

    Lepton Number  Violation     

(0νββ,  meson and lepton 
decays,  collider processes, …)  

What are the sources and mediators 
of lepton family violation?

“Charged” Lepton Flavor Violation 

(μ ↔ e, ,  τ ↔ μ , τ ↔ e processes)

Dirac?
Majorana?



Charged Lepton Flavor Violation
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• ν oscillations ⇒ Le,μ,τ  not conserved.  However,  in SM + massive ν,  Charged-LFV decays are 

suppressed to unobservable level    

LFV with charged leptons

νi

γ
Petcov ’77,   Marciano-Sanda ’77,  Shrock ’77…
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• ν oscillations ⇒ Le,μ,τ  not conserved.  However,  in SM + massive ν,  Charged-LFV decays are 

suppressed to unobservable level    

LFV with charged leptons

νi

γ

• Observation of CLFV processes would 
unambiguously indicate new physics, 
related to the origin of  leptonic ‘flavor’ 
& possibly neutrino mass

Petcov ’77,   Marciano-Sanda ’77,  Shrock ’77…

Ex: Type-I seesaw
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• ν oscillations ⇒ Le,μ,τ  not conserved.  However,  in SM + massive ν,  Charged-LFV decays are 

suppressed to unobservable level    

LFV with charged leptons

νi

γ

• Observation of CLFV processes would 
unambiguously indicate new physics, 
related to the origin of  leptonic ‘flavor’ 
& possibly neutrino mass

Petcov ’77,   Marciano-Sanda ’77,  Shrock ’77…

Ex: Type-II seesaw



LFV probes across energy scales

• Decays of μ, τ (and mesons) 
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     (K →πμe;     B → Kμτ, Kμe;   Bs → μτ, μe,  quarkonia , … )

• Collider processes:

BR~ 10-13

BR~ 10-8

μ → e a (BR~ 10-6)

LHC
/

LHC

HERA, 
EIC 

EIC

Belle-II

Mu2e, Comet, MEG2,  Mu3e, … 
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• LFV processes are sensitive to both heavy and light + weakly coupled new physics

1/Coupling 
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vEW

CLFV physics reach

UV physics
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LLFV �
vC↵�

D

⇤2

¯̀↵�µ⌫`
� +

X

�̃

C↵�

�̃

⇤2

¯̀↵�̃`� ¯̀̃�`+
X

�

C↵�

�

⇤2

¯̀↵�`� q̄�q +
1

F �

↵�

@µa ¯̀↵�µ`�

LSMEFT �

X

n

Cn

⇤2
OLFV

n
+ ...

Lportals �
1

F �

↵�

@µa ¯̀
↵�

µ`� + ...

2

 Fαβ  up to ~ 109 TeV
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See Ethan Neil’s talk

See 
Kaori Fuyuto’s 

talk



17

CLFV phenomenology

Each model generates a specific pattern of operators 
→ multiple CLFV measurements needed to extract the underlying physics 
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Dipole:  SUSY-GUT and 
SUSY see-saw scenarios, 

… 

Scalar: RPV SUSY and RPC 
SUSY for large tan(β) and 
low mA, leptoquarks, … 

4-lepton:  Type II seesaw,  
RPV SUSY,  LRSM, … 

Vector  Type III seesaw,   
LRSM,  leptoquarks, …
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CLFV phenomenology
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Key features of the underlying physics that we’d like to uncover:  
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CLFV phenomenology

Λ/√C ~ 104-5 TeV
Λ/√C ~ 102 TeV

μ-e sector: 

τ-μ(e) sector: 

(Muon decays)
(Tau decays)

BRα→β ~ (vew/Λ)4∗|(Cn)αβ|2 

• New physics mass scale through any process
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Key features of the underlying physics that we’d like to uncover:  
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• Relative strength of operators ([CD]eμ vs [CS]eμ… ) through μ →3e  versus μ →eγ  
versus  μ →e conversion (and similarly for 𝜏→e,μ) ⇒  Mediators,  mechanism  

• Flavor structure of couplings  ([CD]eμ vs [CD]τμ…) through  μ → e versus           
τ → μ  versus  τ → e  ⇒  Sources of flavor breaking

• New physics mass scale through any process

CLFV phenomenology
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• Relative strength of operators ([CD]eμ vs [CS]eμ… ) through μ →3e  versus μ →eγ  
versus  μ →e conversion (and similarly for 𝜏→e,μ) ⇒  Mediators,  mechanism  

• Flavor structure of couplings  ([CD]eμ vs [CD]τμ…) through  μ → e versus           
τ → μ  versus  τ → e  ⇒  Sources of flavor breaking

• New physics mass scale through any process

CLFV phenomenology

Multiplicity of searches is essential.  The EIC can play an important role 
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Key features of the underlying physics that we’d like to uncover:  



LFV @ the EIC?
VC, Kaori Fuyuto, Chris Lee, Emanuele Mereghetti, Bin Yan,  2102.06176
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 Experience at HERA     →    Gonderinger & Ramsey-Musolf,  1006.5063          EIC Yellow Report,  2103.05419     Zhang et al.  2207.10261      … 

τ-μ sector:  h vs τ decays
Dipole (D),  Scalar 4-fermion (S), Gluon (G) operators 

li

lj
h

li

lj

h

li lj

q,l q,l

τ→μππ is the decay mode most closely related to the LHC process

Higgs decay

τ-μ sector:  h vs τ decays
Dipole (D),  Scalar 4-fermion (S), Gluon (G) operators 

li

lj
h

li

lj

h

li lj

q,l q,l

τ→μππ is the decay mode most closely related to the LHC process

Higgs decay

e
τ

Given the relatively low c.m.s. energy,  the discovery potential and diagnosing   
power of the EIC can be studied in the context of the SMEFT & portals**

** See talks by                 
Kaori Fuyuto 

and  Ethan Neil 

Same operators

The EIC is an intensity frontier machine!



LFV @ the EIC?
VC, Kaori Fuyuto, Chris Lee, Emanuele Mereghetti, Bin Yan,  2102.06176
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 Experience at HERA     →    Gonderinger & Ramsey-Musolf,  1006.5063          EIC Yellow Report,  2103.05419     Zhang et al.  2207.10261      … 

μ, τ

• Here focus on UV physics in the model-independent EFT framework (√S< vew)

• Need to compare sensitivity of the EIC and other probes (μ, τ decays,…)

Leading terms induced 
by dim-6 operators 

~ 1/Λ2



EIC vs decays:  ‘back of the envelope’
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VC, Kaori Fuyuto, Chris Lee, Emanuele Mereghetti, Bin Yan,  2102.06176

Integrated luminosity

• Number of LFV DIS signal events: N scatt
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• But scale is constrained by 
upper limit on BR:  
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τ-μ sector:  h vs τ decays
Dipole (D),  Scalar 4-fermion (S), Gluon (G) operators 
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τ→μππ is the decay mode most closely related to the LHC process

Higgs decay
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Integrated luminosity

• Number of LFV DIS signal events: N scatt
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Total signal efficiency:  
selection cut, reconstruction, detection 

• Requirement on integrated 
luminosity ⨉ efficiency
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RHS does not depend on Λ. 
Uniquely determined if a single 

BSM operator dominates

• Observing one event requires 
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τ-μ sector:  h vs τ decays
Dipole (D),  Scalar 4-fermion (S), Gluon (G) operators 
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(assume ~5-10 fb-1 / year at EIC) 
• Selected examples 

Prohibitive

Borderline

Very competitive!

Dipole

Light 
quarks

Heavy 
quarks

VC, Kaori Fuyuto, Chris Lee, Emanuele Mereghetti, Bin Yan,  2102.06176

• ‘Back of the envelope’  requirement on integrated luminosity ⨉ efficiency
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(assume ~5-10 fb-1 / year at EIC) 
• Selected examples 

Prohibitive

Borderline
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Dipole

Light 
quarks
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VC, Kaori Fuyuto, Chris Lee, Emanuele Mereghetti, Bin Yan,  2102.06176

• ‘Back of the envelope’  requirement on integrated luminosity ⨉ efficiency
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(assume ~5-10 fb-1 / year at EIC) 
• Selected examples 

Prohibitive

Borderline

Very competitive!

Dipole

Light 
quarks

Heavy 
quarks

Suppression factors  in the cross section (due to PDF) and decay 
rate (due to loop) differ by orders of magnitude  

VC, Kaori Fuyuto, Chris Lee, Emanuele Mereghetti, Bin Yan,  2102.06176

• ‘Back of the envelope’  requirement on integrated luminosity ⨉ efficiency
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• Selected examples 

Prohibitive

Borderline

Very competitive!

Dipole

Light 
quarks

Heavy 
quarks

VC, Kaori Fuyuto, Chris Lee, Emanuele Mereghetti, Bin Yan,  2102.06176

(For e →μ transitions εL  gets larger…)

• ‘Back of the envelope’  requirement on integrated luminosity ⨉ efficiency
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VC, Kaori Fuyuto, Chris Lee, Emanuele Mereghetti, Bin Yan,  2102.06176

• If one ‘turns on’ multiple SMEFT effective couplings, then the 
requirements for the EIC luminosity and efficiency become less 
stringent due to possible cancellations in the numerator of  this ratio

• ‘Back of the envelope’  requirement on integrated luminosity ⨉ efficiency
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VC, Kaori Fuyuto, Chris Lee, Emanuele Mereghetti, Bin Yan,  2102.06176

• If one ‘turns on’ multiple SMEFT effective couplings, then the 
requirements for the EIC luminosity and efficiency become less 
stringent due to possible cancellations in the numerator of  this ratio

These rough dimensional analysis estimates are confirmed by explicit calculation.                                                  
Highest discovery potential in heavy quark operators.                                                                              

In presence of multiple operators the EIC plays a key role in constraining ‘flat directions’. 

See talk by K. Fuyuto

• ‘Back of the envelope’  requirement on integrated luminosity ⨉ efficiency

N scatt

S
= ✏s L �ep!`X

�ep!`X =
�̄(S)

⇤4

N scatt

S
= 1 !

✏sL =
⇤4

�̄(S)

BR  BRUL

⌧` �`!eY  BRUL

`!eY

�`!eY =
�̄`(m`)

⇤4

⇤4
�

⌧`�̄`

BRUL

`!eY

✏s L �
�̄`

�̄

⌧`
BRUL

`!eY

=
�`!eY

�ep!`X

⌧`
BRUL

`!eY

✏s L �
�`!eY

�ep!`X

⇥
⌧`

BRUL

`!eY

2



Lepton Number Violation 



Are neutrinos Dirac or Majorana? 
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• Simple test (B. Kayser):  generate ν beam from π+→μ+νμ and check whether it produces μ+ on a target downstream

π+μ+ νμ ? μ+νμ

A Dirac neutrino won’t do that. 
A Majorana neutrino with helicity=+1 (ν(R)=ν+) will produce μ+.                     

But fraction of ν(R)=ν+ produced in π+→μ+νμ is ~(mν/Eν)2 < 10-16!!

Smallness of ν mass and  V-A nature of the weak interactions imply that

Neutrinoless probes of ΔL=2 dynamics are our best bet!
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Demonstrate Majorana nature of massive 
neutrinos (neutrino=antineutrino)  

Demonstrate that an excess of matter over antimatter 
can be created in an elementary process, pointing to an 
explanation of the baryon asymmetry in the universe                                               

ΔL=2 neutrionless processes

Potentially observable only 
in certain even-even nuclei  
(76Ge, 100Mo,136Xe, …) for 
which single beta decay is 
energetically forbidden

2νββ

0νββ

(Ee1 + Ee2)/Q

• Neutrinoless double beta decay

Observation ⇒  BSM physics with far reaching implications 
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ΔL=2 neutrionless processes

• Neutrinoless double beta decay
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Same sign di-leptons 
@ the LHC
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Flavorful LNV DIS
@ the EIC ?

• Meson and charged lepton decays & collider processes

BR (K) ~ 10-10 BR (B) ~ 10-8 BR (𝜏) ~ 10-8BR (μ) ~ 10-13
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Flavorful LNV DIS
@ the EIC ?

• Meson and charged lepton decays & collider processes

Among (e−e−) ΔL=2 neutrinoless processes  0νββ decay is generically the strongest probe  — 
“Avogadro’s number wins”(P.  Vogel)

But in certain scenarios other probes can compete and give access to flavorful LNV 

BR (K) ~ 10-10 BR (B) ~ 10-8 BR (𝜏) ~ 10-8BR (μ) ~ 10-13
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LNV @ the EIC?

• Use general frameworks:  SMEFT and ‘neutrino portal’ (SM +νR)  

• ΔL=2 operators appear in SMEFT at d=5, 7, 9 , …  ⇒  Generate effective vertices 

Dim-5 
Majorana

 mass insertion
m ~ v2/Λ
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1 The process e�p ! `+X (` = µ, ⌧) at the EIC: simple estimates

The DIS LNV process involves 3 jets in the final state, because at the parton level it

is generated by operators (local or non-local, as in the case of light Majorana neutrino

exchange) of the structure ūi�dj ūk�dlēaecb, with i, j, k, l, a, b generic flavor labels. For the

purpose of obtaining simple sensitivity estimates, we consider below a subset of the �L = 2

LNV operators of dimension 5, 7, and 9.

1.1 LNV @ dimension 5

For the dimension-5 operator, the amplitudes are proportional to the flavor o↵-diagonal

elements of the Majorana mass matrix, which we indicate by me`. The scaling of the

Majorana mass with the LNV scale ⇤ appearing in the dim-5 operator is me` ⇠ v2/⇤.

If the center of mass energy
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See talk by Tao Han

Unpublished work done in collaboration with Kaori Fuyuto and Emanuele Mereghetti
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LNV @ the EIC?

• Use general frameworks:  SMEFT and ‘neutrino portal’ (SM +νR)  

• ΔL=2 operators appear in SMEFT at d=5, 7, 9 , …  ⇒  Generate effective vertices 
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1 The process e�p ! `+X (` = µ, ⌧) at the EIC: simple estimates

The DIS LNV process involves 3 jets in the final state, because at the parton level it

is generated by operators (local or non-local, as in the case of light Majorana neutrino

exchange) of the structure ūi�dj ūk�dlēaecb, with i, j, k, l, a, b generic flavor labels. For the

purpose of obtaining simple sensitivity estimates, we consider below a subset of the �L = 2

LNV operators of dimension 5, 7, and 9.
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See talk by Tao Han

Unpublished work done in collaboration with Kaori Fuyuto and Emanuele Mereghetti
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EIC vs other probes: dim-5

µ� A ! e+ A0

⌧� ! `+⇡�⇡�

e�p ! `+ + 3 jets

m↵� =
X

i=1,2,3

U↵iU�imi

e� p ! `+ +X

` = e, µ, ⌧

LLFV �
vC↵�

D

⇤2

¯̀↵�µ⌫F
µ⌫`� +

X

�̃

C↵�

�̃

⇤2

¯̀↵�̃`� ¯̀̃�`+
X

�

C↵�

�

⇤2

¯̀↵�`� q̄�q +
1

F �

↵�

@µa ¯̀↵�µ`�

LSMEFT �

X

n

Cn

⇤2
OLFV

n
+ ...

Lportals �
1

F �

↵�

@µa ¯̀
↵�

µ`� + ...

2

µ� A ! e+ A0

⌧� ! `+⇡�⇡�

e�p ! `+ + 3 jets

m↵� =
X

i=1,2,3

U↵iU�imi

e� p ! `+ +X

` = e, µ, ⌧

LLFV �
vC↵�

D

⇤2

¯̀↵�µ⌫F
µ⌫`� +

X

�̃

C↵�

�̃

⇤2

¯̀↵�̃`� ¯̀̃�`+
X

�

C↵�

�

⇤2

¯̀↵�`� q̄�q +
1

F �

↵�

@µa ¯̀↵�µ`�

LSMEFT �

X

n

Cn

⇤2
OLFV

n
+ ...

Lportals �
1

F �

↵�

@µa ¯̀
↵�

µ`� + ...

2

µ� A ! e+ A0

⌧� ! `+⇡�⇡�

e�p ! `+ + 3 jets

m↵� =
X

i=1,2,3

U↵iU�imi

e� p ! `+ +X

` = e, µ, ⌧

LLFV �
vC↵�

D

⇤2

¯̀↵�µ⌫F
µ⌫`� +

X

�̃

C↵�

�̃

⇤2

¯̀↵�̃`� ¯̀̃�`+
X

�

C↵�

�

⇤2

¯̀↵�`� q̄�q +
1

F �

↵�

@µa ¯̀↵�µ`�

LSMEFT �

X

n

Cn

⇤2
OLFV

n
+ ...

Lportals �
1

F �

↵�

@µa ¯̀
↵�

µ`� + ...

2

Dim-5 
Majorana

 mass insertion
m ~ v2/Λ
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• ‘Back of the envelope’ estimate (with Λ4  → Λ2(d-4) )                                         
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1 The process e�p ! `+X (` = µ, ⌧) at the EIC: simple estimates

The DIS LNV process involves 3 jets in the final state, because at the parton level it

is generated by operators (local or non-local, as in the case of light Majorana neutrino

exchange) of the structure ūi�dj ūk�dlēaecb, with i, j, k, l, a, b generic flavor labels. For the

purpose of obtaining simple sensitivity estimates, we consider below a subset of the �L = 2

LNV operators of dimension 5, 7, and 9.

1.1 LNV @ dimension 5

For the dimension-5 operator, the amplitudes are proportional to the flavor o↵-diagonal

elements of the Majorana mass matrix, which we indicate by me`. The scaling of the

Majorana mass with the LNV scale ⇤ appearing in the dim-5 operator is me` ⇠ v2/⇤.

If the center of mass energy
p
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cross section scales as
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which in practice for
p
S ⇠ v (appropriate for the EIC) agrees with the previous estimate.

The estimate (1.1) also applies to the process pp ! e±`±jj at the LHC.

For the LNV decay ⌧� ! e+⇡�⇡�, following Ref. [1] we estimate
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where we identified Q ⇠ F⇡ ⇠ ⇤QCD.
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where in this relation Q ⇠ mµ. For nuclei of experimental interest, like 27Al, one has

↵Z ⇠ 0.1. Note also that the normalizing to the regular muon capture rate we obtain
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2.

For the �/� ratio needed to compare sensitivities we find
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Assuming LNV at dimension 5, for the e↵ective EIC luminosities needed to compete

with low-energy µ or ⌧ processes we find

✏collL
D=5
e⌧ ⇠ 2 fb�1 (1.6)

✏collL
D=5
eµ ⇠ 670 fb�1 , (1.7)

showing that the EIC can be competitive in the e-⌧ sector.

1.2 LNV @ dimension 7

We assume a dimension-7 operator of the form LLQd̄H. Collider cross sections in this case

scale as 2
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For the LNV ⌧� ! e+⇡�⇡� decay amplitude we estimate

A ⇠
m⌧Q3

v⇤3
(1.9)

(where Q ⇠ ⇤QCD from the hadronic matrix element of a quark pseudo-scalar density and

axial current between vacuum and pion). For the decay rate we have
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• Both EIC and rare decays probe ‘uninteresting’ regime

• For example σ ~ 1fb−1 for meμ ~ me𝜏 ~ 10 GeV  (but we know that meμ ~ me𝜏 ~ mee  < eV) 
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EIC vs other probes: dim-7
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Assuming LNV at dimension 5, for the e↵ective EIC luminosities needed to compete

with low-energy µ or ⌧ processes we find
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which in practice for
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• EIC competitive!  

• It probes relatively low scale LNV:  σ ~ 1fb−1  for  Λ~ 500 GeV
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• ‘Back of the envelope’ estimate (with Λ4  → Λ2(d-4) )                                         

Atre, Barger, Han hep-ph/0502163
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EIC vs other probes: dim-9
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which in practice for
p
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• EIC competitive!  

• It probes low scale LNV:  σ ~ 1fb−1  for  Λ~ 100-200 GeV

• ‘Back of the envelope’ estimate (with Λ4  → Λ2(d-4) )                                         

Atre, Barger, Han hep-ph/0502163
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EIC vs other probes: dim-9
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which in practice for
p
S ⇠ v (appropriate for the EIC) agrees with the previous estimate.

The estimate (1.1) also applies to the process pp ! e±`±jj at the LHC.
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Assuming LNV at dimension 5, for the e↵ective EIC luminosities needed to compete

with low-energy µ or ⌧ processes we find
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e⌧ ⇠ 2 fb�1 (1.6)
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showing that the EIC can be competitive in the e-⌧ sector.
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• Caveats:

• Large uncertainty due to high power of scale Q associated with non-perturbative QCD effects

• Given low scale Λ,  EFT analysis should be taken with a grain of salt

Berryman, deGouvea, Kelly, 
Kobach 1611.00032 Liao, Ma, Wang  2102.03491

• ‘Back of the envelope’ estimate (with Λ4  → Λ2(d-4) )                                         

Atre, Barger, Han hep-ph/0502163
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EIC vs other probes: dim-9
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The above estimate lead to (using
p
S = 100 GeV and Q ⇠ ⇤QCD ⇠ 0.3 GeV)
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showing that the EIC can in principle be competitive for these operators.
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which in practice for
p
S ⇠ v (appropriate for the EIC) agrees with the previous estimate.

The estimate (1.1) also applies to the process pp ! e±`±jj at the LHC.

For the LNV decay ⌧� ! e+⇡�⇡�, following Ref. [1] we estimate

�⌧ ⇠
1

(2⇡)3
m2

e⌧ Q
4m3

⌧

v8
, (1.3)

where we identified Q ⇠ F⇡ ⇠ ⇤QCD.

For the µ�
! e+ conversion in nuclei, following Ref. [2] we estimate 1

�µ ⇠
1

(2⇡)

m2
eµQ

7

v8
(↵Z)3 , (1.4)

where in this relation Q ⇠ mµ. For nuclei of experimental interest, like 27Al, one has

↵Z ⇠ 0.1. Note also that the normalizing to the regular muon capture rate we obtain

�(µ�
! e+)/�capt ⇠ G2

F
m2

eµQ
2.

For the �/� ratio needed to compare sensitivities we find

�⌧

�
⇠ (2⇡)2m3

⌧

Q4

S2
,

�µ

�
⇠ (2⇡)4

Q7

S2
(↵Z)3 . (1.5)
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• Caveats:

• Large uncertainty due to high power of scale Q associated with non-perturbative QCD effects

• Given low scale Λ,  EFT analysis should be taken with a grain of salt

These rough estimates suggest that the EIC can be very competitive in probing ‘flavorful’ LNV 

Motivates a real study (beyond dimensional analysis) both for low-energy probes and EIC signatures 

Berryman, deGouvea, Kelly, 
Kobach 1611.00032 Liao, Ma, Wang  2102.03491

• ‘Back of the envelope’ estimate (with Λ4  → Λ2(d-4) )                                         

Atre, Barger, Han hep-ph/0502163
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Conclusions and outlook

1/Coupling 

M

vEW

• Shed light on open questions, complementary to high-E searches.  
Illustrated impact through two examples:

• Vibrant experimental & theoretical activity exploring BSM physics at the precision / intensity frontier 

• Charged lepton flavor violation 

• Lepton number violation 

• The EIC will play a role in this exciting endeavor  

• Model independent dimensional analysis considerations suggest that the EIC                                                               
can probe uncharted territory in LFV and flavorful LNV    

• More work needed on theory / simulation / detector development   


