Uncovering New Laws of Nature at the EIC

Brookhaven National Laboratory, Upton, NY USA November 20–22, 2024

Low energy probes of physics beyond the Standard Model

Vincenzo Cirigliano

INSTITUTE for NUCLEAR THEORY

- - Lepton flavor violation
 - Lepton number violation

• The quest for new physics at the low-energy precision / intensity frontier — landscape

• Shedding light on the origin and nature of neutrino mass (with an eye towards the EIC)

The quest for new physics at the precision / intensity frontier

• The SM is remarkably successful but it's likely incomplete

Credit: Fermilab

Addressing these shortcomings & puzzles requires new physics

Credit: X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScl; Magellan/U.Arizona/ D.Clowe et al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.

No Neutrino Mass, no Baryon Asymmetry, no Dark Matter, no Dark Energy Origin of flavor, Strong CP problem, Unification,...

New physics: where?

Where is the new physics? Is it Heavy? Is it Light & weakly coupled? \bullet

I/Coupling

Two complementary paths to search for new physics lacksquare

 $E = mc^2$

New physics: how?

I/Coupling

New physics: how?

Two complementary paths to search for new physics \bullet

 $\Delta E \,\Delta t \sim h$

I/Coupling

Imprints of heavy BSM physics: new local interactions suppressed by inverse powers of mass

New physics: how?

Two complementary paths to search for new physics ullet

I/Coupling

"Portals": leading SM interactions with the dark sector (though lowest dimensional SM singlet operators)

 $\mathcal{L} \sim O_{\text{portals}} + O$ $\frac{1}{\Lambda}$

New physics: how?

Two complementary paths to search for new physics \bullet

I/Coupling

Both frontiers needed to probe the particle content & symmetries of \mathcal{L}_{BSM} and address the open questions

I/Coupling

• Three classes, pushing the boundary in qualitatively different ways and at different mass scales

 \bullet

I/Coupling

Three classes, pushing the boundary in qualitatively different ways and at different mass scales

. . .

I. Searches for rare or SM-forbidden processes that probe approximate or exact symmetries of the SM (L, B, CP, L_a): $0\nu\beta\beta$ decay, proton decay, EDMs, LFV ($\mu \rightarrow e$ conversion, $ep \rightarrow \tau X$, ...),

Sensitive to very high mass scale.

Connection to Sakharov conditions for baryogenesis (LNV, BNV, CPV) & origin and nature of neutrino masses (LNV, LFV)

 \bullet

I/Coupling

Three classes, pushing the boundary in qualitatively different ways and at different mass scales

• • •

I. Searches for rare or SM-forbidden processes that probe approximate or exact symmetries of the SM (L, B, CP, L_a): $0v\beta\beta$ decay, proton decay, EDMs, LFV ($\mu \rightarrow e$ conversion, $ep \rightarrow \tau X$, ...),

> 2. Precision tests of SM-allowed processes: β -decays (mesons, neutron, nuclei), PV electron scattering, muon g-2,

> > • • •

Can detect the footprints of mutli-TeV force mediators as well as light mediators

I/Coupling

Three classes, pushing the boundary in qualitatively different ways and at different mass scales

. . .

I. Searches for rare or SM-forbidden processes that probe approximate or exact symmetries of the SM (L, B, CP, L_a): $0\nu\beta\beta$ decay, proton decay, EDMs, LFV ($\mu \rightarrow e$ conversion, $ep \rightarrow \tau X$, ...),

> 2. Precision tests of SM-allowed processes: β -decays (mesons, neutron, nuclei), PV electron scattering, muon g-2,

> > . . .

3. Searches / characterization of light and weakly coupled particles: active V's, sterile V's, dark sector particles and mediators, axions,

. . .

Probe neutrino properties, dark matter & dark sectors

I/Coupling

Three classes, pushing the boundary in qualitatively different ways and at different mass scales

I. Searches for rare or SM-forbidden processes that probe approximate or exact symmetries of the SM (L, B, CP, L_a): $0\nu\beta\beta$ decay, proton decay, EDMs, LFV ($\mu \rightarrow e$ conversion, $ep \rightarrow \tau X$, ...),

> 2. Precision tests of SM-allowed processes: β -decays (mesons, neutron, nuclei), PV electron scattering, muon g-2,

3. Searches / characterization of light and weakly coupled particles: active V's, sterile V's, dark sector particles and mediators, axions,

> The EIC is an intensity frontier machine and can play a role in all three classes

 \bullet

I/Coupling

Three classes, pushing the boundary in qualitatively different ways and at different mass scales

I. Searches for rare or SM-forbidden processes that probe approximate or exact symmetries of the SM (L, B, CP, L_a): $0v\beta\beta$ decay, proton decay, EDMs, LFV ($\mu \rightarrow e$ conversion, $ep \rightarrow \tau X$, ...),

> 2. Precision tests of SM-allowed processes: β -decays (mesons, neutron, nuclei), PV electron scattering, muon g-2,

3. Searches / characterization of light and weakly coupled particles: active V's, sterile V's, dark sector particles and mediators, axions,

> Will discuss LFV & LNV with an eye towards the EIC

Probing the origin of neutrino mass

H. Murayama

- \bullet
- Lorentz invariance \Rightarrow two options for massive neutrinos: Dirac or Majorana \bullet

The Standard Model

Massive neutrinos provide the only laboratory-based evidence of physics beyond the Standard Model

 $\Delta L=0$

 $\Delta L=2$

$$\mathcal{L}_D \sim \bar{\nu}_R \, M_D \, \nu_L$$

Conserves $L=L_e+L_{\mu}+L_{\tau}$

$$\mathcal{L}_M \sim \nu_L^T \, C M_M \, \nu_L$$

Violates L (Δ L=2)

- Massive neutrinos provide the only laboratory-based evidence of physics beyond the Standard Model
- Lorentz invariance \Rightarrow two options for massive neutrinos: Dirac or Majorana
- Mode Neutrino mass and new physics

 $\mathcal{L}_{\nu \mathrm{SM}} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\nu - \mathrm{mass}}$ Dirac mass Dirac mass $m \bar{\nu}_L \nu_R + \text{h.c.} = m \bar{\nu} \nu$ $\nu = \nu_L + \nu_R$ **Diráć?** $H \mathcal{H}_{\mathbf{X} \mathbf{X}}$ M_{R}^{-1} ν_R $L_L^{\alpha} =$ L_L^{α} • Violates $L_{e,\mu,\tau}$, conserves L

• Violates $L_{e,\mu,\tau}$ and $L(\Delta L=2)$

- Massive neutrinos provide the only laboratory-based evidence of physics beyond the Standard Model
- Lorentz invariance \Rightarrow two options for massive neutrinos: Dirac or Majorana
- Model Peutriny of that's and the physics Neutrino mass and new physics

 $\mathcal{L}_{\nu \rm SM} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\nu - \rm mass}$ Dirac mass Dirac mass $m \bar{\nu}_L \nu_R + \text{h.c.} = m \bar{\nu} \nu$ $\nu = \nu_L + \nu_R$ **Diráć?** $H \mathcal{H}_{\mathbf{X} \mathbf{X}}$ M_{R}^{-1} $L_L^{\alpha} =$ L_L^{α} Violates L_{e,μ,τ}, conserves L

• Violates $L_{e,\mu,\tau}$ and $L(\Delta L=2)$

- Lorentz invariance \Rightarrow two options for massive neutrinos: Dirac or Majorana
- Model Peutriny of that's duce developing the set of the Neutrino mass and new physics

 $\mathcal{L}_{\nu \mathrm{SM}} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\nu - \mathrm{mass}}$ Dirac mass Dirac mass $m \bar{\nu}_L \nu_R + \text{h.c.} = m \bar{\nu} \nu$ $\nu = \nu_L + \nu_R$ **Diráć?** $H \mathcal{H}_{\mathbf{X} \mathbf{X}}$ M_{R}^{-1} $L_L^{\alpha} =$ L_L^{α} • Violates $L_{e,\mu,\tau}$ and $L(\Delta L=2)$ Violates L_{e,μ,τ}, conserves L

Massive neutrinos provide the only laboratory-based evidence of physics beyond the Standard Model

Charged Lepton Flavor Violation

LFV with charged leptons

• V oscillations $\Rightarrow L_{e,\mu,\tau}$ not conserved. However, in SM + massive V, Charged-LFV decays are suppressed to unobservable level

 $Br(\mu$

$$\mathcal{L}_{\nu \text{SM}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\nu-\text{mass}}$$
$$(a \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U^*_{\mu i} U_{ei} \frac{\Delta m^2_{1i}}{M^2_W} \right|^2 < 10^{-54}$$

Petcov '77, Marciano-Sanda '77, Shrock '77...

LFV with charged leptons

• V oscillations $\Rightarrow L_{e,\mu,\tau}$ not conserved. However, in SM + massive V, Charged-LFV decays are suppressed to unobservable level

 Observation of CLFV processes would unambiguously indicate new physics, related to the origin of leptonic 'flavor' & possibly neutrino mass

$$\mathcal{L}_{\nu \text{SM}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\nu-\text{mass}}$$
$$u \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U^*_{\mu i} U_{ei} \frac{\Delta m_{1i}^2}{M_W^2} \right|^2 < 10^{-54}$$

Petcov '77, Marciano-Sanda '77, Shrock '77...

LFV with charged leptons

• V oscillations $\Rightarrow L_{e,\mu,\tau}$ not conserved. However, in SM + massive V, Charged-LFV decays are suppressed to unobservable level

 Observation of CLFV processes would unambiguously indicate new physics, related to the origin of leptonic 'flavor' & possibly neutrino mass

$$\mathcal{L}_{\nu \text{SM}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\nu-\text{mass}}$$
$$(a \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U^*_{\mu i} U_{ei} \frac{\Delta m^2_{1i}}{M^2_W} \right|^2 < 10^{-54}$$

Petcov '77, Marciano-Sanda '77, Shrock '77...

LFV probes across energy scales

Decays of μ , τ (and mesons)

(K
$$\rightarrow \pi \mu e$$
; B $\rightarrow K \mu \tau$,

(BR~ 10⁻⁶) BR~ 10-13 BR~ 10-8

Collider processes:

CLFV physics reach

• LFV processes are sensitive to both heavy and light + weakly coupled new physics

Dipole: SUSY-GUT and SUSY see-saw scenarios,

. . .

4-lepton: Type II seesaw, RPV SUSY, LRSM, ...

→ multiple CLFV measurements needed to extract the underlying physics

Scalar: RPV SUSY and RPC SUSY for large $tan(\beta)$ and low m_A , leptoquarks, ...

Vector Type III seesaw, LRSM, leptoquarks, ...

 $\mathcal{L}_{\rm LFV} \supset \frac{v C_D^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \sigma_{\mu\nu} F^{\mu\nu} \ell^{\beta} + \sum_{\tilde{\Gamma}} \frac{C_{\tilde{\Gamma}}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \tilde{\Gamma} \ell^{\beta} \bar{\ell} \tilde{\Gamma} \ell + \sum_{\Gamma} \frac{C_{\Gamma}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \Gamma \ell^{\beta} \bar{q} \Gamma q + \frac{1}{F_{\alpha\beta}^{\Gamma}} \partial_{\mu} a \, \bar{\ell}^{\alpha} \Gamma^{\mu} \ell^{\beta}$

Key features of the underlying physics that we'd like to uncover:

$$\mathcal{L}_{\rm LFV} \supset \frac{v C_D^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \sigma_{\mu\nu} F^{\mu\nu} \ell^{\beta} + \sum_{\tilde{\Gamma}} \frac{C_{\tilde{\Gamma}}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \tilde{\Gamma} \ell^{\beta} \bar{\ell} \tilde{\Gamma} \ell + \sum_{\Gamma} \frac{C_{\Gamma}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \Gamma \ell^{\beta} \bar{q} \Gamma q + \frac{1}{F_{\alpha\beta}^{\Gamma}} \partial_{\mu} a \, \bar{\ell}^{\alpha} \Gamma^{\mu} \ell^{\beta}$$

Key features of the underlying physics that we'd like to uncover:

• New physics mass scale through any process

μ-e sector: $\Lambda/\sqrt{C} \sim 10^2 \,\text{TeV}$ τ - μ (e) sector:

 $BR_{\alpha \to \beta} \sim (v_{ew}/\Lambda)^4 * |(C_n)^{\alpha \beta}|^2$

//√C ~ 10⁴⁻⁵ TeV

(Muon decays) (Tau decays)

$$\mathcal{L}_{\rm LFV} \supset \frac{v C_D^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \sigma_{\mu\nu} F^{\mu\nu} \ell^{\beta} + \sum_{\tilde{\Gamma}} \frac{C_{\tilde{\Gamma}}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \tilde{\Gamma} \ell^{\beta} \bar{\ell} \tilde{\Gamma} \ell + \sum_{\Gamma} \frac{C_{\Gamma}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \Gamma \ell^{\beta} \bar{q} \Gamma q + \frac{1}{F_{\alpha\beta}^{\Gamma}} \partial_{\mu} a \, \bar{\ell}^{\alpha} \Gamma^{\mu} \ell^{\beta}$$

Key features of the underlying physics that we'd like to uncover:

- New physics mass scale through any process
- •

Relative strength of operators ($[C_D]^{e\mu}$ vs $[C_S]^{e\mu}$...) through $\mu \rightarrow 3e$ versus $\mu \rightarrow e\gamma$ versus $\mu \rightarrow e$ conversion (and similarly for $\tau \rightarrow e, \mu$) \Rightarrow Mediators, mechanism

 $\mathcal{L}_{\rm LFV} \supset \frac{v C_D^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \sigma_{\mu\nu} F^{\mu\nu} \ell^{\beta} + \sum_{\tilde{\Gamma}} \frac{C_{\tilde{\Gamma}}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha}$

Key features of the underlying physics that we'd like to uncover:

- New physics mass scale through any process
- \bullet
- Flavor structure of couplings ($[C_D]^{e\mu}$ vs $[C_D]^{\tau\mu}...$) through $\mu \rightarrow e$ versus $\tau \rightarrow \mu$ versus $\tau \rightarrow e \Rightarrow$ Sources of flavor breaking

$${}^{\alpha}\tilde{\Gamma}\ell^{\beta}\bar{\ell}\tilde{\Gamma}\ell + \sum_{\Gamma}\frac{C^{\alpha\beta}_{\Gamma}}{\Lambda^{2}}\bar{\ell}^{\alpha}\Gamma\ell^{\beta}\bar{q}\Gamma q + \frac{1}{F^{\Gamma}_{\alpha\beta}}\partial_{\mu}a\;\bar{\ell}^{\alpha}\Gamma^{\mu}\ell^{\beta}$$

Relative strength of operators ($[C_D]^{e\mu}$ vs $[C_S]^{e\mu}$...) through $\mu \rightarrow 3e$ versus $\mu \rightarrow e\gamma$ versus $\mu \rightarrow e$ conversion (and similarly for $\tau \rightarrow e, \mu$) \Rightarrow Mediators, mechanism

 $\mathcal{L}_{\rm LFV} \supset \frac{v C_D^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha} \sigma_{\mu\nu} F^{\mu\nu} \ell^{\beta} + \sum_{\tilde{\Gamma}} \frac{C_{\tilde{\Gamma}}^{\alpha\beta}}{\Lambda^2} \bar{\ell}^{\alpha}$

Key features of the underlying physics that we'd like to uncover:

- New physics mass scale through any process
- $\tau \rightarrow \mu$ versus $\tau \rightarrow e \Rightarrow$ Sources of flavor breaking

Multiplicity of searches is essential. The EIC can play an important role

$${}^{\alpha}\tilde{\Gamma}\ell^{\beta}\bar{\ell}\tilde{\Gamma}\ell + \sum_{\Gamma}\frac{C^{\alpha\beta}_{\Gamma}}{\Lambda^{2}}\bar{\ell}^{\alpha}\Gamma\ell^{\beta}\bar{q}\Gamma q + \frac{1}{F^{\Gamma}_{\alpha\beta}}\partial_{\mu}a\;\bar{\ell}^{\alpha}\Gamma^{\mu}\ell^{\beta}$$

```
Relative strength of operators ([C_D]^{e\mu} vs [C_S]^{e\mu}...) through \mu \rightarrow 3e versus \mu \rightarrow e\gamma
versus \mu \rightarrow e conversion (and similarly for \tau \rightarrow e, \mu) \Rightarrow Mediators, mechanism
```

```
• Flavor structure of couplings ([C_D]^{e\mu} vs [C_D]^{\tau\mu}...) through \mu \rightarrow e versus
```


LFV @ the EIC?

Experience at **HERA** Gonderinger & Ramsey-Musolf, 1006.5063 EIC Yellow Report, 2103.05419 Zhang et al. 2207.10261 \rightarrow ... VC, Kaori Fuyuto, Chris Lee, Emanuele Mereghetti, Bin Yan, 2102.06176

Here focus on UV physics in the model-independent EFT framework ($\sqrt{S} < v_{ew}$) \bullet

• Need to compare sensitivity of the EIC and other probes (μ , τ decays,...)

Leading terms induced by dim-6 operators $\sim 1/\Lambda^2$

EIC vs decays: 'back of the envelope'

VC, Kaori Fuyuto, Chris Lee, Emanuele Mereghetti, Bin Yan, 2102.06176

• Number of LFV DIS signal events:

Total signal efficiency: selection cut, reconstruction, detection

Observing one event requires

EIC vs decays: 'back of the envelope'

VC, Kaori Fuyuto, Chris Lee, Emanuele Mereghetti, Bin Yan, 2102.06176

• Number of LFV DIS signal events:

Total signal efficiency: selection cut, reconstruction, detection

Observing one event requires

But scale is constrained by upper limit on BR:

 $\tau \rightarrow \mu \pi \pi$ is the decay mode most closely related to the LHC process $\tau \rightarrow \mu \pi \pi$ is the decay mode most closely related to the LHC process

EIC vs decays: 'back of the envelope'

VC, Kaori Fuyuto, Chris Lee, Emanuele Mereghetti, Bin Yan, 2102.06176

• Number of LFV DIS signal events:

Total signal efficiency: selection cut, reconstruction, detection

Observing one event requires

But scale is constrained by upper limit on BR:

Requirement on integrated luminosity × efficiency

VC, Kaori Fuyuto, Chris Lee, Emanuele Mereghetti, Bin Yan, 2102.06176

'Back of the envelope' requirement on integrated luminosity \times efficiency \bullet

Selected examples \bullet

(assume \sim 5-10 fb⁻¹ / year at EIC)

$$m_{\tau}^{3} \epsilon_{s} \mathcal{L} = 10^{8} \, \mathrm{fb}^{-1}$$
 Prohibitive

VC, Kaori Fuyuto, Chris Lee, Emanuele Mereghetti, Bin Yan, 2102.06176

'Back of the envelope' requirement on integrated luminosity \times efficiency

Selected examples

(assume \sim 5-10 fb⁻¹ / year at EIC)

$m_{ au}^3$	$\epsilon_s \mathcal{L} = 10^8 \mathrm{fb}^{-1}$	Prohibitive
$\frac{m_{\tau}^5}{\pi)^2 S}$	$\epsilon_s \mathcal{L} = 10^3 \mathrm{fb}^{-1}$	Borderline

VC, Kaori Fuyuto, Chris Lee, Emanuele Mereghetti, Bin Yan, 2102.06176

'Back of the envelope' requirement on integrated luminosity \times efficiency

Selected examples

Suppression factors in the cross section (due to PDF) and decay rate (due to loop) differ by orders of magnitude

(assume \sim 5-10 fb⁻¹ / year at EIC)

Prohibitive	$\epsilon_s \mathcal{L} = 10^8 \mathrm{fb}^{-1}$	$m_{ au}^3$
Borderline	$\epsilon_s \mathcal{L} = 10^3 \mathrm{fb}^{-1}$	$\frac{m_{\tau}^5}{(\pi)^2 S}$
Very competitive!	$\epsilon_s \mathcal{L} = 0.1 \mathrm{fb}^{-1}$	$\frac{m_{ au}^5}{\pi)^2 S}$

VC, Kaori Fuyuto, Chris Lee, Emanuele Mereghetti, Bin Yan, 2102.06176

'Back of the envelope' requirement on integrated luminosity \times efficiency

Selected examples

$$m_{\tau}^{3} \quad \epsilon_{s} \mathcal{L} = 10^{8} \, \text{fb}^{-1} \qquad \text{Prohibitive}$$

$$\frac{m_{\tau}^{5}}{(\tau)^{2}S} \quad \epsilon_{s} \mathcal{L} = 10^{3} \, \text{fb}^{-1} \qquad \text{Borderline}$$

$$\frac{m_{\tau}^{5}}{(\pi)^{2}S} \quad \epsilon_{s} \mathcal{L} = 0.1 \, \text{fb}^{-1} \qquad \text{Very competitive!}$$

(For $e \rightarrow \mu$ transitions \mathcal{EL} gets larger...)

VC, Kaori Fuyuto, Chris Lee, Emanuele Mereghetti, Bin Yan, 2102.06176

'Back of the envelope' requirement on integrated luminosity \times efficiency

If one 'turns on' multiple SMEFT effective couplings, then the \bullet requirements for the EIC luminosity and efficiency become less stringent due to possible cancellations in the numerator of this ratio

VC, Kaori Fuyuto, Chris Lee, Emanuele Mereghetti, Bin Yan, 2102.06176

'Back of the envelope' requirement on integrated luminosity \times efficiency

If one 'turns on' multiple SMEFT effective couplings, then the lacksquarerequirements for the EIC luminosity and efficiency become less stringent due to possible cancellations in the numerator of this ratio

> These rough dimensional analysis estimates are confirmed by explicit calculation. Highest discovery potential in heavy quark operators. In presence of multiple operators the EIC plays a key role in constraining 'flat directions'.

See talk by K. Fuyuto

Lepton Number Violation

Smallness of v mass and V-A nature of the weak interactions imply that Neutrinoless probes of $\Delta L=2$ dynamics are our best bet!

Are neutrinos Dirac or Majorana?

Simple test (B. Kayser): generate V beam from $\pi^+ \rightarrow \mu^+ V_{\mu}$ and check whether it produces μ^+ on a target downstream

A Dirac neutrino won't do that. A Majorana neutrino with helicity=+1 ($v(R)=v_+$) will produce μ^+ . But fraction of $v(R) = v_+$ produced in $\pi^+ \rightarrow \mu^+ v_\mu$ is $\sim (m_v/E_v)^2 < 10^{-16}!!$

$\Delta L=2$ neutrionless processes

Neutrinoless double beta decay $2\nu\beta\beta$ 0.8 0.6 dN/dE 0.4 0.2 0.0 0.2

Demonstrate Majorana nature of massive neutrinos (neutrino=antineutrino)

$$T_{1/2} > \#\,10^{25} {\rm yr}$$

Potentially observable only in certain even-even nuclei (⁷⁶Ge, ¹⁰⁰Mo, ¹³⁶Xe, ...) for which single beta decay is energetically forbidden

Observation \Rightarrow BSM physics with far reaching implications

$\Delta L=2$ neutrionless processes

• Neutrinoless double beta decay

$$(N,Z) \rightarrow (N \cdot$$

Meson and charged lepton decays & collider processes

$$(2, Z + 2) + e^{-} + e^{-}$$

$$T_{1/2} > \# \, 10^{25} \mathrm{yr}$$

• Neutrinoless double beta decay

$$(N,Z) \rightarrow (N \cdot$$

But in certain scenarios other probes can compete and give access to flavorful LNV

Among (e^-e^-) $\Delta L=2$ neutrinoless processes $0v\beta\beta$ decay is generically the strongest probe — "Avogadro's number wins" (P. Vogel)

Unpublished work done in collaboration with Kaori Fuyuto and Emanuele Mereghetti

- Use general frameworks: SMEFT and 'neutrino portal' (SM $+v_R$) \bullet
- $\Delta L=2$ operators appear in SMEFT at d=5, 7, 9, ... \Rightarrow Generate effective vertices \bullet

LNV @ the EIC?

See talk by Tao Han

 $\bar{u}_i \Gamma d_j \, \bar{u}_k \Gamma d_l \bar{e}_a e_b^c$

Unpublished work done in collaboration with Kaori Fuyuto and Emanuele Mereghetti

- Use general frameworks: SMEFT and 'neutrino portal' (SM $+v_R$)
- $\Delta L=2$ operators appear in SMEFT at d=5, 7, 9, ... \Rightarrow Generate effective vertices \bullet

LNV @ the EIC?

See talk by Tao Han

 $\bar{u}_i \Gamma d_j \, \bar{u}_k \Gamma d_l \bar{e}_a e_b^c$

 \bullet

- Both EIC and rare decays probe 'uninteresting' regime \bullet
- For example $\sigma \sim 1 \text{fb}^{-1}$ for $m_{e\mu} \sim m_{e\tau} \sim 10 \text{ GeV}$ (but we know that $m_{e\mu} \sim m_{e\tau} \sim m_{ee} < \text{eV}$)

- EIC competitive!
- It probes relatively low scale LNV: $\sigma \sim 1 \text{fb}^{-1}$ for $\Lambda \sim 500 \text{ GeV}$

- EIC competitive!
- It probes low scale LNV: $\sigma \sim 1 \text{fb}^{-1}$ for $\Lambda \sim 100-200 \text{ GeV}$ \bullet

Caveats:

- Given low scale Λ , EFT analysis should be taken with a grain of salt

• Large uncertainty due to high power of scale Q associated with non-perturbative QCD effects

These rough estimates suggest that the EIC can be very competitive in probing 'flavorful' LNV Motivates a real study (beyond dimensional analysis) both for low-energy probes and EIC signatures

Conclusions and outlook

- \bullet
- Shed light on open questions, complementary to high-E searches. \bullet Illustrated impact through two examples:
 - Charged lepton flavor violation
 - Lepton number violation

- The EIC will play a role in this exciting endeavor
 - Model independent dimensional analysis considerations suggest that the EIC can probe uncharted territory in LFV and flavorful LNV
 - More work needed on theory / simulation / detector development

Vibrant experimental & theoretical activity exploring BSM physics at the precision / intensity frontier

I/Coupling