Heavy Neutral Leptons @ EIC

Tao Han University of Pittsburgh

Uncovering New Laws of Nature @ EIC BNL, Nov. 22, 2024

Neutrinos

the most elusive/least known particles in the SM

- How many species: $3 \nu_L$'s + N_R?
- Absolute mass scale: or a new physics scale: $M_{\text{majorana}} >> v$? m_{ν} \sim y_{ν} ν < 1 eV?
- Mass-ordering?

- Flavor oscillations & CP violation?
- Non-standard interactions?
- Mixing with sterile $v's$?
- Portal to dark sector?
- \rightarrow 6+ Nobel Prizes related to v's, more than other discoveries, and more excitement to come!

→ **New Laws of Nature!**

See BSM talks: M. Nycz; V. Cirigliano; K. Fuyuto; N. Neil; H. Liu; S. Mantry; S. Trifinopoulos …

SM as a low-energy effective field theory: la L active field + The leading SM gauge invariant operator is at dim-5:* 1 Λ $({\sf y}_{\sf v}{\sf L}{\sf H}\,)$ $({\sf y}_{\sf v}{\sf L}{\sf H}\,)$ + h.c. $\;\;\Rightarrow$ y 2 ν v 2 Λ νL v c R. *S. Weinberg, Phys. Rev. Lett. 1566 (1979) **implications:** $\mathsf{retical}\colon \Lambda \to \mathsf{new}\; \mathsf{s} \mathsf{c} \mathsf{a}$ *S. Weinberg, Phys. Rev*
 Implications:

• Theoretical: **A** > new scale / particles, implies an underlying (UV) theory! The See-saw spirit: [†] T_{H} is seen in the synergy of \sim $\Lambda \Rightarrow \left\{ \begin{array}{cl} 10 & \text{GeV} & \text{101} \\ 10 & \text{GeV} & \text{101} \end{array} \right.$ †^M inkowski (1977); Yanagit ^a (1979); Gell-M ann, Ramond, Slansky (1979), **Inductive field theory:** \mathcal{S} implies the symmetry \mathcal{S} implies the symmetry \mathcal{S} implies the symmetry \mathcal{S} $(y_{\rm V} \perp H) + h.c. \Rightarrow \frac{\partial V}{\partial} \nabla_{\rm L} V_{\rm R}^{\rm C}.$ S.L. Glashow (1980); M ohapatra, Senjanovic (1980) ... **I n t r and the control is a t he control of the City Arrange invariant operator is at dim-5:*** $-$ ነ.(berator is at dim-

1.c. $\Rightarrow \frac{y_V^2 v^2}{\Lambda}$ $\frac{1}{\Lambda}$ (y_vLH)(y_vLH) + h.c. $\Rightarrow \frac{y_v^2 v^2}{\Lambda} \nabla_{\Gamma} v_R^c$.

*S. Weinberg, Phys. Rev. Lett. 156 ∗ 1 Λ **Implications:**
 $\mathbf{a} \colon \mathbf{\Lambda} \to \text{new scale } / \text{ particles},$

n underlying (UV) theory! $\Lambda \rightarrow$ new scale

inderlying (UV)

The See-saw spirit: In underlying (UV) t
The See-saw spirit:
If m_v ~1 eV, then $A \sim y$ 2 ν .
eory!
^{(10¹⁴ GeV).} If $m_V \sim 1$ eV, then $\Lambda \sim y_V^2$ (10
 $\Lambda \Rightarrow \begin{cases} 10^{14} \text{ GeV} \text{ for } y_V \sim 1; \\ 100 \text{ GeV} \text{ for } y_V \sim 10^{-1} \end{cases}$ −1 eV, then $\Lambda \sim y_v^2$ (10
10¹⁴ GeV for y_v ~ 1;
100 GeV for y_v ~ 10⁻⁶ . \Rightarrow $\begin{cases} 10^{14} \text{ GeV} \text{ for } y_v \sim 1; \\ 100 \text{ GeV} \text{ for } y_v \sim 10^{-6}. \end{cases}$

Shownal: • Observational: $2 \rightarrow$ Maiorana mass (Maiorana neutrinos) V^2V^2 • SM neutrino masses can come from RH neutrinos, *N* \overline{a} \mathbf{r} Wainhard Phys Pay Latt 1566 (1979) A SAW *hH i* ²*y* 2 *M ^N • N* can be light, but we expect it to be (very) weakly coupled! $\frac{10^{14} \text{ GeV}}{400} = \frac{10^{14} \text{ GeV}}{400} = \frac{10^{14} \text{ eV}}{400} = \frac{10^{14}$ ✓ 2 $\overline{\nu}_e = \nu$ $\dot{}$ **p** = **1** $\dot{}$ **n** $\dot{}$ **new sc** *M ^N* $\overline{}$ V W_{α} ^{oupling can be a coupling can be α} Mohapatra and Valle, 1986; Casas and Ibarra, 2001; Shaposhnikov, 2006; … Field theory:
or is at dim-5.* **e field theory:**
ator is at dim-5:*
 $\Rightarrow \frac{y_v^2 v^2}{2} \nabla v \cdot v \cdot$ M gauge invariant operator is at dim-5:*
 $\frac{1}{\Lambda}$ (y_vLH)(y_vLH) + h.c. \Rightarrow $\frac{y_V^2 v^2}{\Lambda}$ ∇ v_R.

*S. Weinberg, Phys. Rev. Lett. 1566 (1979 **1** Λ + h.c. $\Rightarrow \frac{\Delta v}{\Delta} \nabla \Gamma v_R^c$.
hberg, Phys. Rev. Lett. 156
e / particles, y λ ν v $\sqrt{2}$ Λ *S. Weinberg, Phys. Rev. Lett. 1566 (1979)*
 plications:
 derlying (UV) theory! The Sourier Character Character See-saw spirit: $\frac{1}{2}$
See-saw spirit: $\frac{1}{2}$
eV, then $A \sim y_V^2$ (10 $\overline{1}$ **Iying (UV) theory!**
ee-saw spirit.[†]
V, then $\Lambda \sim y_V^2$ (10¹⁴ Ge⁾ 2 (101 4 G eV). $\overline{\mathbf{G}}$ spirit_†

∧ ~ y_v² (10¹⁴ GeV).
for y_v ~ 1;
· y_v ~ 10⁻⁶. 1 $\Lambda \sim y_V^2$ (10¹⁴ GeV).
for y_v ~ 1;
or y_v ~ 10^{−6}. $\left\{ \begin{array}{ll} 10^{14}~{\rm GeV}~{\rm for}~{\rm y_{\rm V}}\sim1;\ \ 100~{\rm GeV}~{\rm for}~{\rm y_{\rm V}}\sim10^{-6}. \end{array} \right.$ iorana mass (Majorana r al:
al:
iorana mass (Majorana neutrinos)
to BSM v physics at low & high-energies L=2 → Majorana mass (Majorana neutrinos)

S.L . Glashow (1980); M ohapat ra, Senjanovic (1980) ... al:

orana mass (Majorana neutrinos)

to BSM *v* physics at low & high energies! \rightarrow Opens the door to BSM ν physics at low & high energies!

†Yanagit a (1979); Gell-M ann, Ramond, Slansky (1979), S.L. Glashow (1980); Mohapatra, Senjanovic (1980) ...

UV-complete theoretical Models:

The Weinberg operator non-renormalizable \rightarrow Need Ultra-Violet completion at/above Λ . Group representations based on SM SU_L(2) doublets: $2 \otimes 2 = 1$ (singlet) + 3(triplet) \rightarrow There are three BSM extensions @ Tree-level:

- Type I: Fermion singlets \otimes (LH)_s
- Type II: Scalar triplet \otimes (L L)_T
- Type III: Fermion triplets \otimes (LH)_T

(There are loop-generated radiative models…)

E. Ma: PRL 81, 1771 (1998). For recent reviews: Z.Z. Xing: arXiv:1406.7739; Y. Cai, TH, T. Li & R. Ruiz: arXiv:1711.02180.

Observati
 u the most-want **Observ
the most-w
The fundamental diagram: Observational Aspects:** the most-wanted process: $\Delta L=2$

The fundamental diagram:

The crossing diagrams *l j* \blacksquare **Uead to r** \mathbf{p} ∶n pro lead to rich processes involving N/T⁰, W⁺_R, H⁺⁺

The transition rates are proportional to ⎧

isition rates are proportional to

\n
$$
\left\{\n\begin{array}{l}\n(m)_{\ell_1 \ell_2}^2 = \left|\sum_{i=1}^3 U_{\ell_1 i} U_{\ell_2 i} m_i\right|^2 \quad \text{for light } v;\n\end{array}\n\right.
$$
\n
$$
|M|^2 \propto \left\{\n\begin{array}{l}\n\frac{|\sum_{i=1}^n V_{\ell_{i} i} V_{\ell_{2} i}|^2}{m_N^2} \quad \text{for heavy } N;\n\end{array}\n\right.
$$
\nfor resonant N production.

1. Neutrino-less double-beta decay

arXiv:1902.04097, M. Dolinski, A. Poon, W. Rodejohann

(2π)

2. - - e ⁺ conversion

PDG expt bound:

$$
B = \frac{\Gamma(Ti + \mu^- \to e^+ + Ca_{gs})}{\Gamma(Ti + \mu^- \to \nu_\mu + Sc)} < 1.7 \times 10^{-12} \sim \left(\frac{\langle m \rangle_{e\mu}}{m_e}\right)^2
$$

 \rightarrow $\langle m \rangle_{e\mu} \leq 17$ (82) MeV, for nuclear singlet (triplet)

Near future experiments: Mu2e (FNAL), COMET (J-PARC)

3. ± lepton decays

On resonance at m_N , only V_{4} ² suppressed!

For non-resonance, weaker bound:

 $\langle m \rangle_{e\tau}$ and $\langle m \rangle_{\mu\tau}$ < **O(1 TeV)**

Atre, TH, Pascoli, Zhang, arXiv:0901.3589

$\overline{\mathbf{R}}$ \mathbf{C} \mathbf{k} **4. τ, K, D, B decays via N: M⁺ → l⁺ l⁺ M⁻**

−)*e* *µ* \overline{a}

showing

CERN NA62, arXiv:1905.07770

$$
\mathcal{B}(K^+ \to \pi^- e^+ e^+) \quad < \quad 2.2 \times 10^{-10},
$$
\n
$$
\mathcal{B}(K^+ \to \pi^- \mu^+ \mu^+) \quad < \quad 4.2 \times 10^{-11}.
$$

blue points), BaBar collaboration: arXiv:1503.08267v1.
Atre, TH, Pa BaBar collaboration: arXiv:1503.08267v1.

Figur e 13. Branching fraction upper limits at 90% CL for LNV decays from *BABAR* [67] (solid *! ! ^φ*. The SM predicts LHCb collaboration: arXiv:1401.5361v2. Atre, TH, Pascoli, Zhang, arXiv:0901.3589, B. Shuve & M. Peskin, arXiv:1607.04258

[§]Keung, Senjanovic (1983); Dicus et al. (1991); A. Datta, M. Guchait, A. Pilaftsis (1993); AT LAS T DR (1999); F. Almeida et al. (2000); F. del Aguila et al. (2007). **十. Han and B. Zhang, hep-ph/ 0604064, PRL (2006).**

Heavy Neutral Leptons @ EIC

Both in NC and CC: $\mathcal{L} \supset \frac{g}{\sqrt{2}} U_{iI} W_{\mu}^- \ell_i^{\dagger} \overline{\sigma}^{\mu} N_I + \frac{g}{2 c_W} U_{iI} Z_{\mu} \nu_i^{\dagger} \overline{\sigma}^{\mu} N_I + \text{H.c.}$

• Production $e^- p \rightarrow N X$: Decay $N \rightarrow I^{\pm} W^{\mp}$, $v Z$

• Decay length: $N \rightarrow I^{\pm} W^{\mp}$, v Z

B. Batell, T. Ghosh, T. Han, K. Xie, arXiv:2210.09287

• **N prompt decay signal:**

Three channels are considered

- \bullet Majorana: e^+3j
- Majorana: $e^+ \mu^- j + \rlap{\,/}E_T$
- Dirac: $\ell^+\ell^-j+\not\!E_T$

Acceptance cuts: (1) . e⁻ p \rightarrow N(e⁺ jj') + j (Majorana Δ L=2) Though NO SM background for e⁺, unless e⁻ fakes e⁺.

 $p_{T_{\ell}} > 2$ GeV and $0 < \eta_{\ell} < 3.5$. $|\eta_j| < 3.5$ with $p_{T_{j_1}} > 20$ GeV, and $p_{T_{j_2,3}} > 5$ GeV.

miss ID

Table 2. Cut-flow table of the Majorana HNL signal, with $|U_e|^2 = 1$ in the $e^+ + 3j$ final state. The last row indicates the cross-section enhancement factor for a $P_e = -70\%$ polarized electron beam. Similarly for the tables below.

(2). $e^- p \rightarrow N(e^+ \mu^- \nu) + j$ (Majorana $\Delta l = 2$)

Cut-flow table of the Majorana HNL signal, with $|U_e|^2 = 1$ in the $\mu^-e^+j + E_T^{\text{miss}}$ final Table 3. state.

(3) . e⁻ p \rightarrow N(e⁻ μ ⁺ v) + j (Dirac-like Δ L=0)

More SM backgrounds to e-

Cut-flow table of the Dirac HNL signal, with $|U_e|^2 = 1$, and SM backgrounds in the Table 4. $\ell^{-} \ell^{+} j + E_T^{\text{miss}}$ final state. The "-" indicates the background size is negligible.

Summary for the prompt decay search EIC: $N \rightarrow I^{\pm} W^{\mp}$, LHC: DY $W^{\mp} \rightarrow N I^{\pm}$

Figure 9. The expected 95% C.L. exclusion limits from prompt searches at the EIC with $\sqrt{s} = 141$ GeV and 100 fb^{-1} of integrated luminosity for HNLs (colored lines), compared with the existing bounds from direct searches $[66-71]$ (gray shaded regions) and indirect precision electroweak constraints [72] (horizontal dashed line). The solid (dashed) green line indicates the sensitivity of the prompt Majorana HNL decay $N \to e^+ + 3j$, with a misidentification rate assumed as 0.1% (0.01%).

Other bounds from "Physics Beyond Colliders" report, arXiv:1901.09966

• **Long-lived particle N (LLP)**

In the laboratory frame, the decay length of N is

 $d_{\rm lab} = \gamma \beta c \tau_N, \quad \gamma = E_N/m_N,$

Assuming the detector coverage: $r = 0.4$ m, $l = 1.2$ m and displaced impact parameter: $d_T = 2$ (20) mm

Summary for LLP decays: $N \rightarrow e^{\pm} \mu^{\mp} \nu$, e^{\pm} jj'

Figure 11. The expected contours of $N = 5$ displaced vertex events detected in the EIC detector. The Majorana (Dirac) type events are shown as purple (orange) lines. The solid (dashes) lines indicate the impact parameter choice as $d_T = 2$ (20) mm. These results are compared with the existing bounds from direct searches $[65-71]$ (gray shaded regions) and indirect precision electroweak constraints [72] (horizontal dashed line). In particular, we include existing displaced vertex searches in the 13 TeV CMS [69] and ATLAS [71] experiments (dark shaded islands).

Summary plot for both prompt & LLPs

Figure 15. The combined EIC sensitivity to HNL, compared with the existing bounds $[65-72]$. For details we refer the reader to Figs. 9 and 11.

B. Batell, T. Ghosh, T. Han, K. Xie, arXiv:2210.09287

N very long-lived, invisible passing through the detection: e p → missing N + j: Mono-jet events No shape difference, rely on event counting …

statistical sensitivity to our HNL model as

Figure 14. The sensitivity probe (red lines) of the EIC based on the mono-jet search, quantified with $S = 2$ in Eq. (4.12), with the relative systematic uncertainty as $\epsilon = 0$, 0.1%, and 1%. The existing bounds come from invisible decays of Z and Higgs bosons [1, 81], peak searches in $B \to e\nu$ decays [82] (gray shaded) and indirect constraints from precision electroweak observables (dashed line) $[72]$. Also shown are contours of signal-to-background ratios $S/B = 10^{-3}$, 10^{-2} , and 10^{-1} (light blue lines).

Significant efforts in searching for N (https://arxiv.org/pdf/2203.08039)

EIC can be complementary to the low-energy oscillation and high-energy colliders

Summary

- EIC will open up a new QCD frontier
- EIC also has potential to seek for BSM new physics, complementary to LHC & other experiments Snowmass White paper: arXiv:2203.13199
- We studied HNL signals at EIC: all flavors e^{\pm} , μ^{\pm} , τ^{\pm} in particular for the Majorana nature.

Prompt decay signal: M_N ~1 – 100 GeV, U_{en}^2 ~10⁻³ Displaced vertex signal: M_N ~O(few GeV), U²_{eN} ~10⁻⁵ Invisible decay mono-jet signal: 2σ sensitivity

Exciting journey ahead!

Thank you: Sally, Hooman, Nicole ... for a great workshop & the hospitality!

Brookhaven National Laboratory, Upton, NY, USA November 20-22, 2024

Organizing Committee Members:

- Elke Aschenauer (BNL)
- Hooman Davoudiasl (co-chair, BNL)
- Sally Dawson (co-chair, BNL)
- Abhay Deshpande (BNL/SBU)
- Yoshitaka Hatta (BNL)
- Simonetta Liuti (Virginia)
- Frank Petriello (Argonne/Northwestern)
- Jianwei Qiu (JLab)
- Robert Szafron (BNL)
- Raju Venugopalan (BNL)

Registration Deadline: October 31, 2024

(Early registration ends September 30, 2024)

https://www.bnl.gov/hepeic/ HEPEIC@bnl.gov

Type I Seesaw: Singlet N_R 's – Sterile neutrinos Γ im please Γ is each Γ is each Γ is the second of the S Γ $\mathsf{L}_{\mathsf{a}\mathsf{L}}$ = ν^a la L $a = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $a = 1, 2, 3;$ N_{bR} , $b = 1, 2, 3, ...$ $n \ge 2$. Majorana neutrinos: $\frac{1}{2}$ $\frac{3+n}{2}$ $m = 1$ $=$ \rightarrow $3 + n$ $m = 1$ Dirac plus Majorana mass terms: $\frac{1}{2}$ relet N 's - Steril \blacksquare $\overline{\mathsf{nc}}$ $\overline{\mathsf{w}}$ $\overline{\mathsf{N}^{\mathsf{C}}}$ 113.
— $(2 - 2)$ $\overline{}$ 3 (R 3 \mathbb{R} v_{aL} = 3 m= 1 \sf{U}_{am} v $_{m}$ լ + $3 + n$ $m' = 4$ V_{am} $\mathsf{N}_{\mathsf{m}}^{\,\mathsf{C}}$ ^m′ L , N $\stackrel{\rm C}{\scriptstyle\sim}$ aL $\overline{}$ 3 $m=1$ $\boldsymbol{\mathsf{X}}$ am <code>V</sup>mL +</code> 3+ n $m' = 4$ Y_{am} $\mathsf{N}^{\,\mathsf{C}}_{\mathsf{m}}$ $\mathsf{m}'\mathsf{L}$, \mathbb{R}^2 $\frac{1}{\sqrt{3}}$ † ≈ I (P M N S), V V $\frac{M}{\sqrt{2}}$ in $\frac{3+n}{2}$ $\begin{array}{ccc} + & \sqrt{9} & W_{11}^+ & V \\ + & \sqrt{9} & W_{21}^- & V_{22}^+ \end{array}$. We v^u P₁ ℓ + h h <u>complete the second</u> $\text{L}_{\text{al}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \text{at} = 1, 2, 3, \quad \text{N}_{\text{bR}}, \quad \text{D} = 1, 2, 3, \dots \text{L} \leq 2.$ $\overline{\mathsf{v}_{\mathsf{L}}}$ N c L $0_{3\times 3}$ $0_{3\times 9}$ $D_{n \times 3}^{V \top}$ M_{n× n} ν c R ${\sf N}_{\sf R}$ m= 1 m^2 3 $3 + n$ $\frac{1}{2}$ m^ν [≈] D ² M \angle 'am ' m L , [∗]M inkowski (1977); Yanagit ^a (1979); Gell-M ann, Ramond, Slansky (1979), S. L . Glashow (1980); M ohapat ra, Senjanovic (1980); M ohapat ra, Senjanovic (1980). ... $R, \quad D = 1, 2, 3$ ⇒ $\sqrt{1 - N^2}$ $\sqrt{0}$ 0 3×3 $0\frac{V}{3}$ \cdot $($ \cdot L $)$ $($ D_n_x₃ (M_{nx}) . jorana neutrinos: \sim $V_{all} = \sum_{m} U_{am} V_{m} + \sum_{m} V_{am} N_{m}^{c}$ $\frac{1}{3}$ $\frac{1}{3}$ m $N_{21}^C = \sum X_{am}V_{ml} + \sum Y_{ai}$ $m=1$ and $m'=4$ T he charged current s: − $-L_{CC}$ = g √ 2 W^{\pm} µ τ $\ell =$ Θ 3 m= 1 $\mathsf{U}^*_{\ell \mathsf{m}}$ ⊽mγ $^{\sf H}{\sf P}_{\sf L}\,\ell\,+\,$ h.c. g √ 2 W^{\pm} µ τ $\ell =$ $\mathop{\mathrm{e}}$ 3+ n $m' = 4$ $\rm V_{\ell m'}^*$ N $_{\rm m}^{\rm c}$ m΄Y $^{\mu}$ P $_{\rm L}$ ℓ + $\,$ h.c.

Type I Seesaw features: Existence of N_R (possibly low mass*) $U_{\ell m}^2 \sim V_{PMNS}^2 \approx \mathcal{O}(1); V_{\ell m}^2 \approx m_\nu/m_N.$ $U_{\ell m}$, Δm_{ν} are from oscillation experiments m_N a free parameter: could be accessible!

But difficult to see N_R : The mixing is typically small, mass wide open: $V_{\ell m}^2 \approx (m_\nu/eV)/(m_N/GeV) \times 10^{-9}$ $\sim 6 \times 10^{-3}$ (low energy bound)

- Fine-tune or hybrid could make it sizeable.
- "Inverse seesaw" Casas and Ibarra (2001);

W. Chao, Z. G. Si, Z. Z. Xing and S. Zhou (2008). A. Y. Smirnov and R. Zukanovich Funchal (2006); A. de Gouvea, J. Jenkins and N. Vasudevan (2007);

A Variation: Inverse seesaw[#] neutrino (SL) and in the extent of the substantial contract of the substantial contract of the extending of the \sim $\overline{}$ n: Inverse seesaw h_{max} mass states, and i and i and i and i and heavy the light and heavy the mass eigenstates with \mathbf{v} a Variation: Inverse seesaw[#]

Small Maiorana mass u, renders the Dirac Silidii Majulalid Mass postuutis liit Dirac
Wakawa seunlings 8 Nimerisings size rund wa couplings & iv inixings sizd h reported the Dirac mass M $\alpha_{\rm s}$ chacts are birde-mass ividezs & N mixings sizable! term in the Lagrangian breaks the leptonic global symmetry, Small Majorana mass μ_s renders the Dirac mass M_D where coaping a minimipo dizable. Yukawa couplings & N mixings sizable!

where \sim 3 \sim 3 \sim 3 \sim 3 \sim 3 \sim 3 \sim $V_{\ell m} \approx (M_D/M_N)^{-} \approx m_{\nu}/\mu_s$ $U(1,0)$ μ_{D}/μ_{N} \sim μ_{ν}/μ_{s} $\frac{V^2}{\sqrt{M}} \sim \frac{(M - M_{\odot})^2}{\gamma} \sim m_{\odot}$ $cm \sim \frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

* v Majorana-like; N Dirac-like. matrix, US , and a 6 \times 6 \times

R. Mohapatra, J. Valle (1986)

Type II Seesaw: No need for N_R, with **Φ**-triplet^{*} T ype II Seesaw (no ^N^R $- + *$ **De II Seesaw: No need for N_R,**
alar triplet Φ (Y = 2) : φ^{± ±}, φ[±], φ⁰ (mar $\frac{1}{2}$ ± 0 T years and the III Seesaw (no NR)

w ith a scalar triplet Ψ (Y = 2). $\Psi^{-1}, \Psi^{-1}, \Psi^{3}$ (many representative models) $\frac{1}{\sqrt{2}}$ a dd a gauge miranant renormalizable term. With a scalar triplet Φ (Y = 2): $\phi^{\pm \pm}$, φ[±], φ alar triplet Φ (Y = 2) : $\phi^{\pm \pm}$, ϕ^{\pm} , ϕ^0 (many representative models).
uge invariant/ renormalizable term:
 $Y_{ij} L_i^{\mathsf{T}} C(i\sigma_2) \Phi L_j + h.c.$
s to the Majorana mass: Add a gauge invariant/renormalizable term: triplet*
ative models). **De II Seesaw: No need for N_R, with Φ**
alar triplet Φ (Y = 2) : φ^{±±},φ[±],φ⁰ (many represent
uge invariant/ renormalizable term: φ^{\pm} , q
tern
'L_j + **D-tr**
sentati
 uu a yauye mvanant/ renormanzavie term 0 (man y represen t at ive mod els) .

r_{ij} L_j U(102) Ψ L_j + n.c. $Y_{ij} L_i^{\mathsf{T}} C(i\sigma_2) \Phi L_j + h.c.$ $h e$ - n.c.
c.
c. $Y_{ii}L_{ii}^{\mathsf{T}}C(i\sigma_{2})\Phi L_{ii} + h$

That loads to the Majorana mass. That leads to the Majorana mass: s to th
water that the set of the s na mass[.]

prodicte

 π _{ij} v_i Uv_j + n.c. Μ $_{\mathsf{i}\mathsf{j}}$ ν $_{\mathsf{i}}^{\mathsf{T}}$ С v $_{\mathsf{j}}$ + h.c. $M: V^{\mathsf{T}}$ C

where $\overline{}$ w here

 η ij = Yij $\langle \Psi \rangle$ = Yij V \sim \sim \sim \sim \sim $M_{ij} = Y_{ij} \langle \Phi \rangle = Y_{ij} v^{\prime}$ \lesssim 1 eV, $\begin{aligned} \Sigma v_j + h.c. \\ &= Y_{ij} v' \lesssim 1 \text{ eV}, \end{aligned}$ \mathbf{v} is \mathbf{v} ...

 V_{α} and α aligariant α $M_{ij} v_i^{\dagger} C v_j + h.c.$
 $M_{ij} = Y_{ij} \langle \Phi \rangle = Y_{ij} v^{\dagger} \le 1 \text{ eV},$

Very same gauge invariant/ renormalizable t erm: Very same gauge invariant/ rene

µH^T(
predicts ^M i j ⁼ ^Yi j ⟨Φ⟩ ⁼ ^Yi j ^v ∼ 1 eV,

†H ⁺ h .c. 2 j v['] ≲
t / re
µH ^T $(iσ₂)$ Φ † zable ter
 $H + h.c.
\nV²$ ′ $=$ μ v^2 $\overline{M_0^2}$ φ , V ery same gauge invariant / renormalizable t erm: $\mathbf{h}_{\mathbf{r}}$, $\mathbf{h}_{\mathbf{r}}$

 \blacksquare agaring to the Iype II Seesaw. I μ H $^{\mathsf{T}}$ (
predicts
leading to the Type II Seesaw.
etterich (1980): Lazarides, Shafi (1981): M † **Eading to the Type II See Alleading to the Type**

*Magg, Wetterich (1980); Lazarides, Shafi (1981); Mohapatra, Senjanovic (1981). ... $ν = μ$ $W = μ$
 $W = μ$
 $W = Λ$
 $W = θ$
 $W = θ$
 $W = ρ$ [†]In Little Higgs model: T.Han, H.Logan, B.Mukhopadhyaya, R.Srikanth (2005). Pading to the Type II Seesaw. [†]
Iterich (1980); Lazarides, Shafi (1981); Mohapatra, Senjanovic (1981). ...
Iggs model: T.Han, H.Logan, B.Mukhopadhyaya, R.Srikanth (2005). ™agg, Wetterich (1980); Lazarides, Shafi (1981); Monapatra, Senjanovic (1981). ...

Radiative Seesaw Models*

- New fields + (Z_2) symmetry \rightarrow no tree-level mass terms
- Close the loops: Quantum corrections could generate m_v. Suppressions (up to 3-loops) make both m_y and M low:

 $m_{\nu} \sim (\frac{1}{16\pi^2})^{\ell}(\frac{v}{M})^k \mu$ With (Majorana) mass scale µ

Generic features:

- New scalars: φ^0 , H⁺, H⁺⁺, ...
- → BSM Higgs physics, possible flavor relations
- Additional Z_2 symmetry \rightarrow Dark Matter η $h^0 \rightarrow \eta \eta$ invisible!

* Zee (1980, 1986); Babu (1988); Ma (2006), Aoki et al. (2009).

Introduction to EIC

The Electron-Ion Collider (EIC) at BNL

- CM energies: 20 100 (140) GeV
- Luminosity: 10^{33-34} /cm²/s (10-100 fb⁻¹/yr, 10 -1000 times of HERA)
- Polarized electron \sim 70%; light A \sim 70%
- Range of nuclear targets: proton/deuteron/gold/uranium

See, Silvia Dalla Torre talk; arXiv:1212.1701, 2103.05419

The primary physics goal of EIC

- 3D tomographic imaging of parton structure
- Precise determination of quark/gluon momentum distributions & contributions to proton spin
- Exploration of novel phases of nuclear matter at high densities

Other physics opportunities

- Precision EW physics: coupling constants
- Fundamental symmetries: parity, flavor, etc.

arXiv:1212.1701, 2103.05419, 2305.14572; Snowmass White paper: 2203.13199

BSM physics @ EIC

Although lower energies than HERA & LHC, there are many BSM scenarios accessible

 LQ

• Lepto-quarks:

• … …

- Squarks from R-parity violation:
- Light neutral gauge boson: "Dark force"
- Light neutral fermion: "sterile neutrino"

arXiv:1212.1701, 2203.13199 Instead, I will take a "signature driven" approach …

Detector capacity

- Multi-purpose detector(s)
- Good hermitic coverage of electron/hadron endcaps
- Good tracking/calorimeters resolutions

http://www.eicug.org/web/sites/default/files/EIC_HANDBOOK_v1.2.pdf