Searching for Lepton Flavor Violation at the EIC

Kaori Fuyuto

Los Alamos National Laboratory

November 21, 2024 At BNL We still don't know much about our Universe.

Why is there more matter than antimatter?

$$\frac{n_b - n_{\bar{b}}}{n_{\gamma}} = 6.1 \times 10^{-10}$$

Need Physics Beyond the Standard Model

Searches for CLFV are strong tools to probe BSM physics.

*Beyond the minimal extension of the SM

Searches for CLFV are strong tools to probe BSM physics.

Ex) SM + neutrino mass (vSM)

Petcov '77, Marciano-Sanda '77

 $\mathcal{L} = \mathcal{L}_{\rm SM} \ + \ \mathcal{L}_{\nu-{\rm mass}}$

Dirac or Majorana

$$\operatorname{Br}(\mu \to e\gamma) = \frac{\alpha_{\rm em}}{32\pi} \left| \sum_{i=2,3} U^*_{\mu i} U_{ei} \frac{\Delta m_{1i}^2}{m_W^2} \right|^2 < 10^{-54} \quad \text{Extremely small!}$$

Searches for CLFV are strong tools to probe BSM physics.

Ex) SM + neutrino mass (vSM)

The Observations of CLFV would point to new physics beyond vSM.

*Underlying mechanism of the neutrino mass.

Models that explain neutrino mass usually introduce CLFV at tree or loop level.

e.g., A.Abada, et al, JHEP 12 (2007) 061

CLFV searches

 $BR(\mu \to e\gamma) < 3.1 \times 10^{-13}$

MEG II Collaboration, 2310.12614

 $BR(\tau \to e\gamma) < 3.3 \times 10^{-8}$

BaBar, PRL104 (2010) 021802

 $BR(\mu^{-} Ti \rightarrow e^{-} Ti) < 6.1 \times 10^{-13}$

P.Wintz, Conf. Proc. C 980420, 534 (1998).

 $BR(\tau \to e\pi^+\pi^-) < 2.3 \times 10^{-8}$

Belle, PLB719 (2013) 346-353

CLFV searches

LFV Leptoquark Searches at HERA

ZEUS collaboration, Eur. Phys. J. C 44 (2005) 463 H1 collaboration, Eur. Phys. J. C 52 (2007) 833

$$\sqrt{S} = 318 \text{ GeV}, \ \mathscr{L} = 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$$

CLFV searches

V. Cirigliano, KF, C. Lee, E. Mereghetti, B. Yan, JHEP03(2021)256 F. Delzanno, KF, S. Gonzalez-Solis, E. Mereghetti, arXiv 2411.13497

Model-Independent Analysis of CLFV process at low- and high-energy

EIC vs LHC vs Low-Energy CLFV searches

SMEFT : Standard Model Effective Field Theory

SMEFT : Standard Model Effective Field Theory

SMEFT : Standard Model Effective Field Theory

Scale Running based on the Renormalization Group Equations

CLFV operators

Total : 16 different types of LFV operators (dim 6)

$$\begin{split} \mathscr{L}_{\mathrm{LFV}} &= \mathscr{L}_{\psi^2 \varphi^2 D} + \mathscr{L}_{\psi^2 X \varphi} + \mathscr{L}_{\psi^2 \varphi^3} + \mathscr{L}_{\psi^4} \\ & X : \text{Gauge boson} \qquad \psi : \text{Fermion} \qquad \varphi : \text{Higgs} \end{split}$$

CLFV operators

Total : 16 different types of LFV operators (dim 6)

$$\supset -\frac{4G_F}{\sqrt{2}} \sum_{\substack{\ell = \tau, \mu \\ q = u, d}} [C_{Lq}]_{\ell eij} \, \bar{\ell}_L \gamma^\mu e_L \, \bar{q}_{Ri} \gamma_\mu q_{Rj}$$

*Assume a generic quark flavor structure

$$\mathbf{Ex} \quad [C_{Ld}]_{\tau e} = \begin{pmatrix} [C_{Ld}]_{dd} & [C_{Ld}]_{ds} & [C_{Ld}]_{db} \\ [C_{Ld}]_{sd} & [C_{Ld}]_{ss} & [C_{Ld}]_{sb} \\ [C_{Ld}]_{bd} & [C_{Ld}]_{bs} & [C_{Ld}]_{bb} \end{pmatrix}$$

*Focus on tau-electron case.

Low-Energy Tau and Meson Decay

Decay mode	Upper limit (90 % C.L.)		
$\tau \to e \pi^+ \pi^-$	uu/dd/ss	2.3×10^{-8}	Belle PLB719(2013)346
$ au o e \pi^0$		8×10^{-8}	Belle PLB648(2007)341
$ au ightarrow e\eta$		9.2×10^{-8}	Belle PLB648(2007)341
$ au ightarrow e \eta'$		1.6×10^{-7}	Belle PLB648(2007)341
$ au o eK_S$	ds/ds	2.6×10^{-8}	Belle PLB692(2010)4
$\tau \to e \pi^+ K^-$		3.7×10^{-8}	Belle PLB719(2013)346
$\tau \to e \pi^- K^+$		3.1×10^{-8}	Belle PLB719(2013)346
$B^0 o e^{\pm} \tau^{\mp}$		1.6×10^{-5}	Belle PRD104(2021)9
$B^+ \to \pi^+ e^+ \tau^-$	db/bd	7.4×10^{-5}	BaBar PRD86(2012)012004
$B^+ \to \pi^+ e^- \tau^+$		2.0×10^{-5}	BaBar PRD86(2012)012004
$B^+ \to K^+ e^+ \tau^-$	sb/bs	1.53×10^{-5}	Belle PRL130(2023)26 261802
$B^+ \to K^+ e^- \tau^+$		1.5×10^{-5}	Belle PRL130(2023)26 261802

Low-Energy Tau and Meson Decay

Decay mode	Upper limit (90 % C.L.)			
$\tau \to e \pi^+ \pi^-$	uu/dd/ss	2.3×10^{-8}	Belle PLB719(2013)346	
$ au o e \pi^0$		8×10^{-8}	Belle PLB648(2007)341	
$ au ightarrow e\eta$		9.2×10^{-8}	Belle PLB648(2007)341	
$ au ightarrow e \eta'$		1.6×10^{-7}	Belle PLB648(2007)341	

• Certain combinations of CLFV operators can be bounded.

Ex) BR(
$$\tau \to e\pi^+\pi^-$$
) $\simeq 0.5 \times \left[[C_{Lu}]_{uu} - [C_{Ld}]_{dd} \right]^2$

A. Celis, V. Cirigliano, E. Passemar, PRD89(2014)095014

Low-Energy Tau and Meson Decay

Decay mode	Upper limit (90 % C.L.)			
$\tau \to e \pi^+ \pi^-$	uu/dd/ss	2.3×10^{-8}	Belle PLB719(2013)346	
$ au o e \pi^0$		8×10^{-8}	Belle PLB648(2007)341	
$ au ightarrow e\eta$		9.2×10^{-8}	Belle PLB648(2007)341	
$ au o e\eta'$		1.6×10^{-7}	Belle PLB648(2007)341	

• Certain combinations of CLFV operators can be bounded.

Ex) BR(
$$\tau \to e\pi^+\pi^-$$
) $\simeq 0.5 \times \left[[C_{Lu}]_{uu} - [C_{Ld}]_{dd} \right]^2$

A. Celis, V. Cirigliano, E. Passemar, PRD89(2014)095014

• Quark-flavor conserving processes are generated by light quarks operators

$$[C_{Lu}]_{\tau e} = \begin{pmatrix} [C_{Lu}]_{uu} & [C_{Lu}]_{uc} & [C_{Lu}]_{ut} \\ [C_{Lu}]_{cu} & [C_{Lu}]_{cc} & [C_{Lu}]_{ct} \\ [C_{Lu}]_{tu} & [C_{Lu}]_{tc} & [C_{Lu}]_{tt} \end{pmatrix} \qquad [C_{Ld}]_{\tau e} = \begin{pmatrix} [C_{Ld}]_{dd} & [C_{Ld}]_{ds} & [C_{Ld}]_{db} \\ [C_{Ld}]_{sd} & [C_{Ld}]_{ss} & [C_{Ld}]_{sb} \\ [C_{Ld}]_{bd} & [C_{Ld}]_{bs} & [C_{Ld}]_{bb} \end{pmatrix}$$
 How?

Scale running effects

Light-quark operators are induced via the RGEs:

LHC search

- Bound on CLFV top decay by ATLAS with 79.8 fb⁻¹: BR $(t \rightarrow q \ell \ell') < 1.86 \times 10^{-5}$ (95 % CL.) ATLAS collaboration, ATLAS-CONF-2018-044
- ATLAS published pp \rightarrow 1 l' bounds in high-mass final states using 36 fb⁻¹

'22 ATLAS and '23 CMS results with 138 and 139 fb⁻¹ ATLAS JHEP 10 (2023) 082 CMS JHEP 05 (2023) 227

Existing bounds

 $[C_{Ld}]_{ij} \ \bar{\tau}_L \gamma^\mu e_L \ \bar{d}_{Ri} \gamma_\mu d_{Rj}$

* Single Operator Analysis

- Operators with d-type quarks sector well constrained by low-energy
- PDF and loop suppression in $[C_{Ld}]_{bb}$

Existing bounds

V. Cirigliano, KF, C. Lee, E. Mereghetti, B. Yan, JHEP03(2021)256

* Single Operator Analysis

$[C_{Lu}]_{ij} \ \bar{\tau}_L \gamma^\mu e_L \ \bar{u}_{Ri} \gamma_\mu u_{Rj}$

- Less constrained by low energy than d-type operators
- Strong bound on $[C_{Lu}]_{tt}$ from $\tau \to e\pi^+\pi^-$

EIC Analysis

- Cross sections : $\mathcal{O}(1-10)$ pb at $\sqrt{S} = 141 \text{ GeV}$
 - e.g., 19 pb for $[C_{Lu}]_{uu}$ and 0.8 pb for $[C_{Ld}]_{bb}$

- Major backgrounds 1) Neu
- 1) Neutral Current $ep \rightarrow ej$
 - 2) Charged Current $ep \rightarrow \nu_e j$
 - * Impose simple cuts to reduce BGs

EIC Analysis

• Cross sections : $\mathcal{O}(1-10)$ pb at $\sqrt{S} = 141 \text{ GeV}$

e.g., 19 pb for $[C_{Lu}]_{uu}$ and 0.8 pb for $[C_{Ld}]_{bb}$

- Major backgrounds 1) Neutral Current $ep \rightarrow ej$
 - 2) Charged Current $ep \rightarrow \nu_e j$

• Promising ID channel

$$BR(\tau \rightarrow e\bar{\nu}_e \nu_\tau) = 17.82 \%$$

$$\checkmark BR(\tau \rightarrow \mu \bar{\nu}_\mu \nu_\tau) = 17.39 \%$$

$$BR(\tau \rightarrow X_h \nu_\tau) = 64.8 \%$$

$$\ast \text{ Eliminate SM backgrounds}$$

$$p_T^{\mu} > 10 \text{ GeV}, \ E_T > 15 \text{ GeV}, \ p_T^{j_1} > 20 \text{ GeV}$$

EIC vs Current limits V. Cirigliano, KF, C. Lee, E. Mereghetti, B. Yan, JHEP03(2021)256 $\sqrt{S} = 141 \text{ GeV}, \ \mathcal{L} = 100 \text{ fb}^{-1} \text{ @ EIC}$

• Overall, stronger limits from low-energy and LHC

 $[C_{Ld}]_{ij} \ ar{ au}_L \gamma^\mu e_L \ ar{d}_{Ri} \gamma_\mu d_{Rj}$

• Possibility that the EIC can compete is in $[C_{Ld}]_{bb}$ and $[C_{Lu}]_{cc}$

EIC vs Current limits V. Cirigliano, KF, C. Lee, E. Mereghetti, B. Yan, JHEP03(2021)256 $\sqrt{S} = 141 \text{ GeV}, \ \mathscr{L} = 100 \text{ fb}^{-1} \text{ @ EIC}$

• Overall, stronger limits from low-energy and LHC

 $[C_{Lu}]_{ij} \ \bar{\tau}_L \gamma^\mu e_L \ \bar{u}_{Ri} \gamma_\mu u_{Rj}$

• Possibility that the EIC can compete is in $[C_{Ld}]_{bb}$ and $[C_{Lu}]_{cc}$

Multi-operator scenario

S. Banerjee, V. Cirigliano, et al, Snowmass White Papaer, 2203.14919

*Case with 8 nonzero CLFV operators

Z couplings + down-type 4F operators

$$\begin{aligned} \mathscr{L}_{\rm LFV} \supset &-\frac{g_2}{c_W} \left(c_{L\varphi}^{(1)} + c_{L\varphi}^{(3)} \right) \bar{\tau}_L \gamma^{\mu} Z_{\mu} e_L \\ &-\frac{4G_F}{\sqrt{2}} \sum_{a=d,s,b} \left[C_{Ld} \right]_{aa} \bar{\tau}_L \gamma^{\mu} e_L \bar{d}_{Ra} \gamma_{\mu} d_{Ra} \\ &-\frac{4G_F}{\sqrt{2}} \sum_{a=d,s,b} \left[C_{LQ,D} \right]_{aa} \bar{\tau}_L \gamma^{\mu} e_L \bar{d}_{La} \gamma_{\mu} d_{La} \end{aligned}$$

• Collider probes are necessary to close the free direction.

What about $e \rightarrow \mu$ case?

F. Delzanno, KF, S. Gonzalez-Solis, E. Mereghetti, arXiv 2411.13497

What about $e \rightarrow \mu$ case?

F. Delzanno, KF, S. Gonzalez-Solis, E. Mereghetti, arXiv 2411.13497

• $\mu \rightarrow e$ conversion currently gives strong bound

What about $e \rightarrow \mu$ case?

F. Delzanno, KF, S. Gonzalez-Solis, E. Mereghetti, arXiv 2411.13497

• A factor of 10 weaker bound on $[C_{Lu}]_{cu}$ at the EIC

Lead by LANL experimental team : J. Kvapil, X. Li, M. Liu, Y. Morales, YD Tsai, Z. Xu

How to tag Tau leptons experimentally?

- Exploit tau-lepton decay topology
 - Displaced track(s) from tau decay
 - Pencil-like isolated track(s)
- Study tau-lepton tagging algorithms using sPHENIX p+p data,

Study on Experimental Side

- Identify displaced tracks with silicon pixel detectors (MVTX)
- Tag pencil-like "jets" with EMCal and HCal
- EIC/ePIC detector simulations
 - Tau-lepton tagging with algorithms developed from sPHENIX data

Search for:

- "Tau-> nv_tau + pi+", BR = 11.5%, displaced isolated single track
- "Tau -> pi+ 2pi0 + nv_tau", BR = 9.5%, pencil-like jets
- "Tau-> muon/e + nv_mu/e + nv_tau", BR = 17.8%, displaced isolated single track

Benchmark performance:

$$\Upsilon \to \tau^+ + \tau^-$$

broad mass of di-hadron and di-lepton of "tau candidates"

Thanks to Ming Liu!

Summary

Searches for Lepton Flavor Violations are Powerful Probes of BSM Physics.

- Systematic Analysis based on SMEFT
 - The RGEs allow to constrain CLFV heavy quark operators

- Operators involving b and c in $e \tau$ case are promising at the EIC
- Collider searches are essential in multi-operator scenarios
- Strong bound in $e \mu$ case especially from $\mu \rightarrow e$ conversion

- <u>Outlook/Discussion</u>
- Z enhancement in e A collision ?
- Multi-Dimensional Analysis using Machine Learning
- b, c quark and tau lepton tagging

Backup slides

Apple to Apple

S. Banerjee, V. Cirigliano, et al, Snowmass White Papaer, 2203.14919

