P³: Precision in Polarized Pdfs

Uncovering New Laws of Nature at the EIC

Brookhaven National Laboratory, Upton, NY USA November 20-22, 2024

Precision in polarized pdfs

Daniel de Florian

Ciencias Físicas ICIFI-ECYT_UNSAM-CONICET

Brief intro to polarized pdfs/DIS

Why Global and why NNLO

BDSSV24 NNLO global fit

QED and photon pdfs Conclusions

Precision in polarized pdfs

Borsa, deF, Sassot, Stratmann, Vogelsang (2024)

deF., Palma, Volonnino (2024)

cross section
$$\frac{d\sigma}{dE'\,d\Omega} = \frac{\alpha^2}{Q^4} \frac{E'}{E} \underbrace{\mathcal{L}_{\mu\nu}(k,q,s)}_{\text{leptonic}} \cdot \underbrace{\mathcal{W}^{\mu}}_{\text{leptonic}}$$

Hadronic tensor in terms of Structure Functions (non-perturbative)

$$\mathcal{W}^{\mu\nu}(P,q,S) = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right)F_1(x,Q^2) + \left(P^{\mu} - \frac{P \cdot q}{q^2}q^{\mu}\right)\left(P^{\nu} - \frac{P \cdot q}{q^2}q^{\nu}\right)F_2(x,Q^2)$$
$$+ iM\,\varepsilon^{\mu\nu\rho\sigma}q_\rho\left[\frac{S_{\sigma}}{P \cdot q}\,g_1(x,Q^2) + \frac{S_{\sigma}(P \cdot q) - P_{\sigma}(S \cdot q)}{(P \cdot q)^2}\,g_2(x,Q^2)\right]$$

Asymmetry $A_1(x, Q^2)$

$$A_{\parallel} = \frac{d\sigma^{(\to \Leftarrow)} - d\sigma^{(\to \Rightarrow)}}{d\sigma^{(\to \Leftarrow)} + d\sigma^{(\to \Rightarrow)}} = D(y) \frac{g_1(x, Q^2)}{F_1(x, Q^2)}$$

Precision in polarized pdfs

Brief intro polarized DIS

F_i: unpolarized structure functions gi: polarized structure functions

cross section
$$\frac{d\sigma}{dE'\,d\Omega} = \frac{\alpha^2}{Q^4} \frac{E'}{E} \underbrace{\mathcal{L}_{\mu\nu}(k,q,s)}_{\text{leptonic}} \cdot \underbrace{\mathcal{W}^{\mu}}_{\text{leptonic}}$$

Hadronic tensor in terms of Structure Functions (non-perturbative)

$$\mathcal{W}^{\mu\nu}(P,q,S) = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right)F_1(x,Q^2) + \left(P^{\mu} - \frac{P \cdot q}{q^2}q^{\mu}\right)\left(P^{\nu} - \frac{P \cdot q}{q^2}q^{\nu}\right)F_2(x,Q^2)$$
$$+ iM\,\varepsilon^{\mu\nu\rho\sigma}q_\rho\left[\frac{S_{\sigma}}{P \cdot q}\,g_1(x,Q^2) + \frac{S_{\sigma}(P \cdot q) - P_{\sigma}(S \cdot q)}{(P \cdot q)^2}\,g_2(x,Q^2)\right]$$

Asymmetry $A_1(x, Q^2)$

$$A_{\parallel} = \frac{d\sigma^{(\to \Leftarrow)} - d\sigma^{(\to \Rightarrow)}}{d\sigma^{(\to \Leftarrow)} + d\sigma^{(\to \Rightarrow)}} = D(y) \frac{g_1(x, Q^2)}{F_1(x, Q^2)}$$

Precision in polarized pdfs

Brief intro polarized DIS

F_i: unpolarized structure functions gi: polarized structure functions

$$g_1(x,Q^2) = \sum_i \frac{e_i^2}{2} \Delta q_i(x,Q^2) \overset{\text{LO}}{+} \frac{\alpha_s}{2\pi} \sum_i \frac{e_i^2}{2} \int_x^1 \frac{dz}{z} \Delta C_i^q(z) \Delta q_i(x/z,Q^2) \\ + \frac{\alpha_s}{2\pi} \sum_i \frac{e_i^2}{2} \int_x^1 \frac{dz}{z} \Delta C^g(z) \Delta g(x/z,Q^2) \\ \text{NLO}$$

cross section
$$\frac{d\sigma}{dE'\,d\Omega} = \frac{\alpha^2}{Q^4} \frac{E'}{E} \underbrace{\mathcal{L}_{\mu\nu}(k,q,s)}_{\text{leptonic}} \cdot \underbrace{\mathcal{W}^{\mu}}_{\text{leptonic}}$$

Hadronic tensor in terms of Structure Functions (non-perturbative)

$$\mathcal{W}^{\mu\nu}(P,q,S) = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right)F_1(x,Q^2) + \left(P^{\mu} - \frac{P \cdot q}{q^2}q^{\mu}\right)\left(P^{\nu} - \frac{P \cdot q}{q^2}q^{\nu}\right)F_2(x,Q^2)$$
$$+ iM\,\varepsilon^{\mu\nu\rho\sigma}q_\rho\left[\frac{S_{\sigma}}{P \cdot q}\,g_1(x,Q^2) + \frac{S_{\sigma}(P \cdot q) - P_{\sigma}(S \cdot q)}{(P \cdot q)^2}\,g_2(x,Q^2)\right]$$

Asymmetry $A_1(x,Q^2)$

$$A_{\parallel} = \frac{d\sigma^{(\to \Leftarrow)} - d\sigma^{(\to \Rightarrow)}}{d\sigma^{(\to \Leftarrow)} + d\sigma^{(\to \Rightarrow)}} = D(y) \frac{g_1(x, Q^2)}{F_1(x, Q^2)}$$

quark and gluon contribution to proton spin

$$\Delta \Sigma = \sum_{i} \int_{0}^{1} \Delta q_{i}(x, Q^{2}) dx \qquad \Delta G = \int_{0}^{1} \Delta g(x, Q^{2}) dx$$

needs extrapolation to 0

Precision in polarized pdfs

Brief intro polarized DIS

F_i : unpolarized structure functions gi: polarized structure functions

$$g_1(x,Q^2) = \sum_i \frac{e_i^2}{2} \Delta q_i(x,Q^2) \overset{\text{LO}}{=} + \frac{\alpha_s}{2\pi} \sum_i \frac{e_i^2}{2} \int_x^1 \frac{dz}{z} \Delta C_i^q(z) \Delta q_i(x/z,Q^2) + \frac{\alpha_s}{2\pi} \sum_i \frac{e_i^2}{2} \int_x^1 \frac{dz}{z} \Delta C^g(z) \Delta g(x/z,Q^2)$$

PDFs obtained by global fit : χ^2 minimization

Precision in polarized pdfs

Flexible parametrization at Q₀ $x\Delta f_i\left(x, Q_0^2\right) = N_i x^{\alpha_i} (1-x)^{\beta_i} \left(1+\gamma_i x+\eta_i x^{\kappa_i}\right)$

several NLO analyses

change parameters ~ few thousand times

DSSV NNPDF JAM

"partial" NNLO

MAP Bertone, Chiefa, Nocera (2024)

NNPDF coming: talk by Juan

first global NNLO

BDSSV24

Borsa, deF, Sassot, Stratmann, Vogelsang (2024)

4

Observables provide sensitivity on different pdfs

Precision in polarized pdfs

 π, K, \dots

pp high-p_T $\Delta g, \Delta q, \Delta \overline{q}$

W bosons

 $\Delta q, \Delta \overline{q}$

TH needed to match experimental accuracy/understanding

Precision in polarized pdfs

TH needed to match experimental accuracy/understanding

Precision in polarized pdfs

70's, 80's LO (Born Level)

TH needed to match experimental accuracy/understanding

LEP- HERA 90's -00's NLO+

Precision in polarized pdfs

70's, 80's LO (Born Level)

TH needed to match experimental accuracy/understanding

LEP- HERA 90's -00's NLO+

LHC 10's-20's-NLO+PS NNLO and beyond

Precision in polarized pdfs

70's, 80's LO (Born Level)

TH needed to match experimental accuracy/understanding

LEP- HERA 90's -00's NLO+

EIC 30's- \geq NNLO+ and beyond

70's, 80's LO (Born Level)

LHC 10's-20's-NLO+PS NNLO and beyond

TH needed to match experimental accuracy/understanding

LEP- HERA 90's -00's NLO+

EIC 30's- \geq NNLO+ and beyond

70's, 80's LO (Born Level)

LHC 10's-20's-NLO+PS NNLO and beyond

TH effort driven by experimental possibilities!

Precision!

Precision in polarized pdfs

Not all observables known at NNLO accuracy yet in polarized case

- NNLO g_1 coefficients DIS
 - NNLO pp \rightarrow W \rightarrow e[±] $\nu^{(-)}$ DY
 - Evolution NNLO evolution kernels
 - HQ Heavy quark matching coefficients
 - SIDIS **NNLO SIDIS coefficients**
 - L.Bonino, T.Gehrmann, M.Löchner, K.Schonwald (2024)
 - S.Goyal, R.Lee, S.Moch, V.Pathak, N.Rana, V.Ravindran (2024)

ICIFI

UNSAM

RHIC jets, dijets, hadrons pp \rightarrow jets, $\pi^{\pm,0}$

E. B. Zijlstra and W. L. van Neerven (1994)

R. Boughezal, Hai Tao Li, F. Petriello (2021)

S. Moch, J.A.M. Vermaseren, A. Vogt (2014, 2015) A.Vogt, S. Moch, M. Rogal, J.A.M. Vermaseren (2008) Bierenbaum et al. (2022)

not ready for use in global fit

hard to implement in Mellin space (became available while performing fit)

only NLO known

$$\alpha_s^k \delta(1-\hat{x}) \left(\frac{\ln^m (1-\hat{z})}{1-\hat{z}} \right)_+, \ \alpha_s^k \delta(1-\hat{z}) \left(\frac{\ln^m (1-\hat{x})}{1-\hat{x}} \right)_+, \ \text{with} \ m \le 2k-1, \quad \hat{x} = \hat{x} = 0, \ \hat{x}$$

$$\alpha_s^k \left(\tfrac{\ln^m(1-\hat{x})}{1-\hat{x}} \right)_+ \left(\tfrac{\ln^n(1-\hat{z})}{1-\hat{z}} \right)_+ \text{ with } m+n \leq 2k-2.$$

SIDIS

All distributions known (up to N3LO), missing regular terms M.Abele, D.de Florian, W.Vogelsang (2022,2023)

Precision in polarized pdfs

$$\alpha_s^k \delta(1-\hat{x}) \left(\frac{\ln^m (1-\hat{z})}{1-\hat{z}}\right)_+, \ \alpha_s^k \delta(1-\hat{z}) \left(\frac{\ln^m (1-\hat{x})}{1-\hat{x}}\right)_+, \text{ with } m \le 2k-1, \quad \hat{x} = \hat{x} = 0, \quad k = 0, \quad$$

$$\alpha_s^k \left(\tfrac{\ln^m(1-\hat{x})}{1-\hat{x}} \right)_+ \left(\tfrac{\ln^n(1-\hat{z})}{1-\hat{z}} \right)_+ \text{ with } m+n \leq 2k-2.$$

SIDIS

pp high-p_T

All distributions known (up to N3LO), missing regular terms M.Abele, D.de Florian, W.Vogelsang (2022,2023)

All ()+ distributions known

 $\Delta \hat{\sigma}^{ab \to cd} \sim J_a^{\rm in} \times J_b^{\rm in} \times J_b^{\rm in}$

D.deF, W.Vogelsang (in preparation)

Precision in polarized pdfs

$$J_c^{\text{jet}} imes J_d^{\text{rec}} imes \text{Tr} \left[\Delta H \, \mathcal{S}^{\dagger} S \mathcal{S}
ight]_{ab \to cd}$$

$$\alpha_s^k \delta(1-\hat{x}) \left(\frac{\ln^m (1-\hat{z})}{1-\hat{z}}\right)_+, \ \alpha_s^k \delta(1-\hat{z}) \left(\frac{\ln^m (1-\hat{x})}{1-\hat{x}}\right)_+, \text{ with } m \le 2k-1, \qquad \hat{x} = \hat{x} = 0$$

$$\alpha_s^k \left(\tfrac{\ln^m(1-\hat{x})}{1-\hat{x}} \right)_+ \left(\tfrac{\ln^n(1-\hat{z})}{1-\hat{z}} \right)_+ \text{ with } m+n \leq 2k-2.$$

SIDIS

All distributions known (up to N3LO), missing regular terms M.Abele, D.de Florian, W.Vogelsang (2022,2023)

All ()+ distributions known

 $\Delta \hat{\sigma}^{ab \to cd} \sim J_a^{\text{in}} \times J_b^{\text{in}} \times J_b^{\text{in}}$

D.deF, W.Vogelsang (in preparation)

pp high-p_T

Another issue: need fragmentation functions, not yet fully global set available at NNLO (use NLO set)

$$J_c^{\text{jet}} \times J_d^{\text{rec}} \times \text{Tr} [\Delta H S^{\dagger} S S]_{ab \to cd}$$

$$\alpha_s^k \delta(1-\hat{x}) \left(\frac{\ln^m (1-\hat{z})}{1-\hat{z}}\right)_+, \ \alpha_s^k \delta(1-\hat{z}) \left(\frac{\ln^m (1-\hat{x})}{1-\hat{x}}\right)_+, \text{ with } m \le 2k-1, \qquad \hat{x} = \hat{x} = 0$$

$$\alpha_s^k \left(\tfrac{\ln^m(1-\hat{x})}{1-\hat{x}} \right)_+ \left(\tfrac{\ln^n(1-\hat{z})}{1-\hat{z}} \right)_+ \text{ with } m+n \leq 2k-2.$$

SIDIS

All distributions known (up to N3LO), missing regular terms M.Abele, D.de Florian, W.Vogelsang (2022,2023)

All ()+ distributions known

 $\Delta \hat{\sigma}^{ab
ightarrow cd} \sim J_a^{\rm in} \times J_b^{\rm in} imes$,

D.deF, W.Vogelsa

pp high-p_T

ICIFI

UNSAM

$$J_c^{\text{jet}} \times J_d^{\text{rec}} \times \text{Tr} [\Delta H S^{\dagger} S S]_{ab \to cd}$$

Ing (in preparation)

Another issue: need fragmentation functions, not yet fully global set available at NNLO (use NLO set) To be safe: select data in a restricted region of phase space (cuts in $x_{SIDIS} > 0.12$ and $p_T > 1.5$ GeV)

Parameterizations:

$$\begin{aligned} (\Delta q + \Delta \bar{q})(x, Q_0^2) &= N_q \, x^{\alpha_q} (1 - x)^{\beta_q} \Big(1 + \gamma_q x^{\delta_q} + \eta_q x \Big) & (u, d) \\ \Delta \bar{q}(x, Q_0^2) &= N_{\bar{q}} \, x^{\alpha_{\bar{q}}} (1 - x)^{\beta_{\bar{q}}} \Big(1 + \gamma_{\bar{q}} x^{\delta_{\bar{q}}} \Big) & (u, d, s) \\ \Delta g(x, Q_0^2) &= N_g \, x^{\alpha_g} (1 - x)^{\beta_g} \Big(1 + \gamma_g x^{\delta_g} \Big) \end{aligned}$$

Evolution: ZMVFNS HQ matching coefficients

- no SU(2)/SU(3) constraints Assumptions:
- Fragmentation:
- Montecarlo Error Sampling Errors: D. deF et al. (2019) Systematic Implementation

data replicas \rightarrow 600 PDFs replicas

Precision in polarized pdfs

Ingredients

 $Q_0^2 = 1 \, GeV^2$

(32 parameters)

checked EKO and APFEL **QCD-PEGASUS** framework A.Vogt (2004)

positivity relative to MSHT20 S. Bailey et al.

BDSS20 BDSS24 NLO FFs jets/ π^0/π^{\pm} (cuts in x and p_T) I. Borsa et al. (2021,2023)

- \rightarrow error propagation
- \rightarrow reweighting

Parameterizations:

$$\begin{aligned} (\Delta q + \Delta \bar{q})(x, Q_0^2) &= N_q \, x^{\alpha_q} (1 - x)^{\beta_q} \Big(1 + \gamma_q x^{\delta_q} + \eta_q x \Big) & (u, d) \\ \Delta \bar{q}(x, Q_0^2) &= N_{\bar{q}} \, x^{\alpha_{\bar{q}}} (1 - x)^{\beta_{\bar{q}}} \Big(1 + \gamma_{\bar{q}} x^{\delta_{\bar{q}}} \Big) & (u, d, s) \\ \Delta g(x, Q_0^2) &= N_g \, x^{\alpha_g} (1 - x)^{\beta_g} \Big(1 + \gamma_g x^{\delta_g} \Big) \end{aligned}$$

Evolution: ZMVFNS HQ matching coefficients

- no SU(2)/SU(3) constraints Assumptions:
- Fragmentation:
- Montecarlo Error Sampling Errors: D. deF et al. (2019) Systematic Implementation

data replicas \rightarrow 600 PDFs replicas

Precision in polarized pdfs

Ingredients

 $Q_0^2 = 1 \, GeV^2$

(32 parameters)

checked EKO and APFEL **QCD-PEGASUS** framework A.Vogt (2004)

positivity relative to MSHT20 S. Bailey et al.

BDSS20 BDSS24 NLO FFs jets/ π^0/π^{\pm} (cuts in x and p_T) I. Borsa et al. (2021,2023)

 \rightarrow error propagation \rightarrow reweighting

Ingredients and Results

Data Selection:

- **DIS:** EMC,SMC,E142,E143,E154,E155, HERMES, COMPASS, HALL-A,CLAS (p,n,d,He)
- **SIDIS:** SMC, HERMES, COMPASS (p,d) \rightarrow ($\pi^{\pm}, K^{\pm}, h^{\pm}$)
- **PP-JETS:** STAR run 5,6,9,12,13,15 $(\sqrt{s} = 200, 510 \, GeV)$
- **PP-** π^0/π^{\pm} : PHENIX, STAR
- **PP** W^{\pm} : PHENIX, STAR

Total:

Precision in polarized pdfs

#data	NLO	NNLO
368	302.7	294.3
114	127.6	122.9
91	111.1	104.7
78	63.5	66.0
22	22.3	20.3
673	627.2	607.5
x _{SIDIS} 2	> 0.12 p_T >	1.5 GeV

Daniel de Florian

11

Precision in polarized pdfs

BDSSV22: NLO with dijets and no cuts on sidis $(\Delta u + \Delta \overline{u})$ and $(\Delta d + \Delta \overline{d})$ well constrained no significant NNLO/NLO differences

Precision in polarized pdfs

BDSSV22: NLO with dijets and no cuts on sidis $(\Delta u + \Delta \overline{u})$ and $(\Delta d + \Delta \overline{d})$ well constrained no significant NNLO/NLO differences

 Δg positive best constrained at RHIC kinematics NNLO/NLO differences within uncertainties

Precision in polarized pdfs

BDSSV22: NLO with dijets and no cuts on sidis $(\Delta u + \Delta \overline{u})$ and $(\Delta d + \Delta \overline{d})$ well constrained no significant NNLO/NLO differences

 Δg positive best constrained at RHIC kinematics NNLO/NLO differences within uncertainties $(\Delta s + \Delta \overline{s})$ consistent with zero suffers the cut and lack of F, D constraints

Precision in polarized pdfs

BDSSV22: NLO with dijets and no cuts on sidis $(\Delta u + \Delta \overline{u})$ and $(\Delta d + \Delta \overline{d})$ well constrained no significant NNLO/NLO differences

 Δg positive best constrained at RHIC kinematics NNLO/NLO differences within uncertainties $(\Delta s + \Delta \overline{s})$ consistent with zero suffers the cut and lack of F, D constraints

 $\Delta \overline{u}$ and $\Delta \overline{d}$ opposite signs constrained by W

 $(\Delta c + \Delta \overline{c})$ small! inherits the gluon uncertainties strongly dependent on perturbative order

ICIFI UNSAM

Precision in polarized pdfs

W bosons

Selected Data Sets

 $\frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g = \frac{1}{2}$

Extrapolation at small x very uncertain...

but might saturate the spin sum rule just from spin of quarks and gluons (no orbital angular momentum)

Spin Sum Rule

 $\frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g = \frac{1}{2}$

Extrapolation at small x very uncertain...

but might saturate the spin sum rule just from spin of quarks and gluons (no orbital angular momentum)

Spin Sum Rule

 $\frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g = \frac{1}{2}$

Extrapolation at small x very uncertain...

but might saturate the spin sum rule just from spin of quarks and gluons (no orbital angular momentum)

Spin Sum Rule

Precision in polarized pdfs

Key measurement for polarized gluon distribution : $g_1(x, Q^2)$ at small x at EIC (coefficient + evolution)

Aschenauer, Borsa, Lucero, Nunes, Sassot (2020)

- Notice that $\alpha_s^2 \sim \alpha \sim 0.01$ and EW effects can be enhanced.
 - $\sigma(\alpha_{s}, \alpha) = \sigma^{(0,0)} + \alpha_{s} \sigma^{(1,0)} + \alpha_{s}^{2} \sigma^{(2,0)} + \ldots + \alpha \sigma^{(0,1)} + \ldots + \alpha_{s} \alpha \sigma^{(1,1)} + \ldots$
 - NLO QCD NNLO QCD LO
- mixed QCD-QED splitting functions known
 - unpolarized deF. Rodrigo, Sborlini (2016) deF., Palma (2023) polarized
- QED corrections to $g_1(x, Q^2)$ deF., Palma (2023)
- Corrections typically ~1% but can be enhanced in certain kinematical regions

new distributions: photon and lepton in the proton

QCD+QED/EW effects

Daniel de Florian

photon distribution :LUXQED

"Hypothetical DIS process" $l + p \rightarrow L + X$ calculated in two ways

I. total cross section in terms of structure functions

Precision in polarized pdfs

Manohar, Nason, Salam, Zanderighi (2016)

$$\begin{split} \Delta\sigma_{lp}(p) &= \frac{1}{2\pi\alpha \left(\mu^{2}\right)} \sigma_{0} \int_{x}^{1} \frac{dz}{z} \int_{Q_{\min}^{2}}^{Q_{\max}^{2}} \frac{dQ^{2}}{Q^{2}} \alpha_{ph}^{2} \left(-Q^{2}\right) \\ & \left\{ H\left(4 - 2z - \frac{4m_{p}^{2}x^{2}}{Q^{2}} - \frac{4m_{p}^{2}x^{2}Q^{2}}{M^{4}} - \frac{8m_{p}^{2}x^{2}}{M^{2}} - \frac{2zQ^{2}}{M^{2}}\right) x g_{1}\left(x/z, Q^{2}\right) \\ & -H\left(\frac{8m_{p}^{2}x^{2}}{zM^{2}} + \frac{8m_{p}^{2}x^{2}}{zQ^{2}}\right) x g_{2}\left(x/z, Q^{2}\right) \right\} \end{split}$$

photon distribution :LUXQED

"Hypothetical DIS process" $l + p \rightarrow L + X$ calculated in two ways

I. total cross section in terms of structure functions

2. from collinear factorization in terms of photon distribution

 $\Delta \sigma_{lp}($

Precision in polarized pdfs

Manohar, Nason, Salam, Zanderighi (2016)

$$\frac{1}{2\pi\alpha (\mu^2)} \sigma_0 \int_x^1 \frac{dz}{z} \int_{Q_{\min}^2}^{Q_{\max}^2} \frac{dQ^2}{Q^2} \alpha_{ph}^2 (-Q^2)$$

$$H\left(4 - 2z - \frac{4m_p^2 x^2}{Q^2} - \frac{4m_p^2 x^2 Q^2}{M^4} - \frac{8m_p^2 x^2}{M^2} - \frac{2zQ^2}{M^2}\right) x g_1 \left(x/z, Q^2\right)$$

$$H\left(\frac{8m_p^2 x^2}{zM^2} + \frac{8m_p^2 x^2}{zQ^2}\right) x g_2 \left(x/z, Q^2\right)$$

$$(p) = \int dy \,\Delta \hat{\sigma}_{l\gamma}^{(0,0)}(yp) \,\Delta f_{\gamma}\left(x,\mu^2\right) + \cdot$$

equate and deduce photon distribution

Allows to compute the polarized photon distribution

$$\Delta f_{\gamma}(x,\mu^{2}) = \frac{1}{2\pi\alpha (\mu^{2})} \int_{x}^{1} \frac{dz}{z} \left\{ \int_{Q_{\min}^{2}}^{\frac{\mu^{2}}{1-2}} \frac{dQ^{2}}{Q^{2}} \alpha_{\text{ph}}^{2} (Q^{2}) \\ \left[\left(4 - 2z - \frac{4m_{p}^{2}x^{2}}{Q^{2}} \right) g_{1}(x/z,Q^{2}) - \left(\frac{8m_{p}^{2}x^{2}}{zQ^{2}} \right) g_{2} + \alpha^{2} (\mu^{2}) 4(1-z) g_{1}(x/z,\mu^{2}) \right\}$$

Requires knowledge of structure functions over full kinematical regime : Elastic, Resonance, Continuum deF., Palma, Volonnino (2024) Elastic: E/M Sach Form factors Low Q continuum: VMD model/Fits Resonance: Fits CLAS data High Q continuum: Perturbative QCD

Precision in polarized pdfs

Polarized photon pdf

several sources of uncertainties...

 $\int_{0.001}^{1} \Delta \gamma \, dx \simeq 0.0049 \pm 0.0008$

Conclusions

- First NNLO global analysis of polarized PDFs: Good perturbative stability going from NLO to NNLO Slight improvement in the description of data (after imposing cut on x_{SIDIS})
- Outlook:
 - Include full NNLO SIDIS results \rightarrow First stage: new NNLO analysis of FFs.
- Percent level accuracy required both for EXP and TH (even QED can contribute)
- Still rather incomplete picture of the proton's spin in terms of the contribution from quarks, antiquarks and gluons.
- The spin program at the future EIC expected to give unique access to the proton's spin structure.

Who carries the spin of the proton?

()

Who carries the spin of the proton?

()

-

Precision in polarized pdfs

Precision in polarized pdfs

Post validation:

Exact NNLO SIDIS coefficients

L.Bonino, T.Gehrmann, M.Löchner, K.Schonwald (2024)

Ingredients and Results

Data Selection:	#da		
DIS: EMC,SMC,E142,E143,E154,E155, HERMES, COMPASS, HALL-A,CLAS (p,n,d,He)	36		
SIDIS: SMC, HERMES, COMPASS (p,d) \rightarrow ($\pi^{\pm}, K^{\pm}, h^{\pm}$)	11		
PP-JETS: STAR run 5,6,9,12,13,15 $(\sqrt{s} = 200, 510 GeV)$			
PP- π^0/π^{\pm} : PHENIX, STAR			
PP W^{\pm} : PHENIX, STAR	2		
Total:	67		

ata	NLO	NNLO	NLO	NNLO	#d
68	302.7	294.3	304.7	308.7	3
14	127.6	122.9	276.1	322.5	2
)1	111.1	104.7		no cuts	
'8	63.5	66.0	~ MAP findings V. Bertone et al. (20		
2	22.3	20.3			
'3	627.2	607.5			
$x_{SIDIS} > 0$	0.12 $p_T > 1.$	5 GeV			

