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Background and Motivations: 
Why do we study  event shape in DIS?τb
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Hadronic Event shapes
• Event shape: Captures global geometry of events

(e.g.  thrust) e+e− τ = 1 − T where T = max
⃗n

∑j | ⃗pj ⋅ ⃗n |

∑j | ⃗pj |

e+ e−

⃗n

T ∼ 1
τ ∼ 0

e+ e−

T ∼ 1/2
τ ∼ τmax ∼ 1/2

(Sum over all final states; inclusive)

• For ,  resummed event shape distributions with nonperturbative corrections:e+e− N3LL′ 

Thrust: Abbate et al.,arXiv:1006.3080 C parameter: Hoang et al.,arXiv:1411.6633



Background and Motivations
• Objective: Accurately describe cross sections in DIS ( ) for jet productionep

• Observable: DIS event shape , a special form of -jettiness.τb
1 N

• Method: SCET-1 factorization theorem with N3LL resummation, combined with  
2-loop fixed-order QCD corrections

• Result: Cross section presented as a distribution in τb
1
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This framework provides one of the most precise 
methods to determine  and universal 
nonperturbative constant  in DIS.

αs
Ω1



Kinematics and Definitions

qμ Breit→ Q
nμ

z − n̄μ
z

2
= Q(0,0,0,1)

Pμ Breit→
Q
2

n̄μ
z

2
=

Q
2x

(1,0,0, − 1)

The momenta in Breit frame are 

(  is the Bjorken )x x
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• The general expression for DIS 1-jettiness: τ1 = ∑
i

min {qB ⋅ pi

QB
,

qJ ⋅ pi

QJ }
: the reference light-like vectors along beam and jetqB, qJ

: the normalization factors which control the relative importance of  and .QB, QJ qB qJ

• Different versions of DIS 1-jettiness are defined by the specific choice of  and .qB,J QB,J



• The formal definition :     (Lorentz invariant and makes  dimension less)τb
1 QB,J = Q2/2 τb

1

τb
1 =

2
Q2 ∑

i∈X

min {qb
B ⋅ pi, qb

J ⋅ pi}

qμ
B = xPμ Breit=

Q
2

nz qμ
J = qμ + xPμ Breit=

Q
2

n̄z

Breit=
1
Q ∑

i∈X

min {nz ⋅ pi, n̄z ⋅ pi}

•  agrees with the classical DIS thrust :τb
1 τQ

τb
1

Breit= 1 −
2
Q ∑

i∈ℋJ

(pi)z = τQ

arXiv:hep-ph/9912488
Antonelli, Dasgupta, Salam

ℋB ℋJ

Energy-momentum conservation classical DIS thrust variable τQ

• Then, 

The sign of  component of  determines z pi pi ∈ ℋB/J

• Reduces contamination from remnant fragmentation in its measurements,  
making it highly desirable for experimental studies. 

• Lorentz invariant, and global observable, so free of NGL 
 Can be computed with high theoretical accuracy.→

Kinematics and Definitions



Other DIS 1-jettiness work
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• The DIS 1-jettieness Event Shape at N3LL + 𝒪(α2
s ) arXiv:2401.01941

Cao, Z. Kang, Liu, Mantry

- Same theoretical accuracy, but different definition of DIS 1-jettiness

1)

2)

- The jet axis is aligned with the jet momentum 
    dependence in the beam function to be integrated out, reducing it to an 
ordinary beam function

→ p2
⊥



Formalism



Formalism
• In this work, we compute the  distribution as follows:τb

1

σ(τb
1) = ∫ dk [σs

PT+σns
PT](τb

1 −
k
Q )[e−2δ(R,μS)(d/dk)F (k − 2Δ(R, μS))]

• : Singular contribution (Leading Power in SCET) 

    Represents two-jet events, combined with all-order log resummation at N3LL level

• : Nonsingular contribution (Power Suppressions) 

    Represents multi-jet events, estimated using full-QCD fixed-order up to 

• : Nonperturbative hadronization corrections 

    Incorporates the nonperturbative shape function , and employs -gap scheme to 

subtract  renormalon ambiguity.

σs
PT

σns
PT

𝒪(α2
s )

e−2δ(R,μS)(d/dk)F (k − 2Δ(R, μS))
F R

𝒪(ΛQCD)



: Singular contributionσs
PT

dσ
dxdQ2dτb

1
=

dσb
0

dxdQ2 ∫ dtJdtBdkS δ (τb
1 −

tJ
Q2

−
tB
Q2

−
kS

Q ) S(kS, μ)

× ∫ d2p⊥Jq(tJ − p2
⊥, μ)[Hb

q(y, Q2, μ)ℬq(tB, x, p2
⊥, μ) + (q → q̄)],

• The SCET factorization formula for  distribution is given by τb
1 arXiv:1303.6952

Kang, Lee, Stewart

where Born-level cross section dσb
0

dxdQ2
=

2πα2
em

Q4 [(1 − y)2 + 1] (Note that )Q2 = sxy

Measurement function for τb
1

Single variable soft function 

Quark jet function Hard function Quark beam function

• With 
we can confine the  integration to the 
beam function only:

tJ → tJ + p2
⊥, and tB → tB − p2

⊥,
p2

⊥
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B̂q(tB, x, μ) = ∫ d2p⊥ℬq(tB − p2
⊥, x, p2

⊥, μ)



: Nonsingular contributionσns
PT

•  Nonsingular contributions from fixed-order full QCD calculations:

dσns
dτb

1
=

dσQCD
dτb

1
−

dσs
dτb

1

• NLOJet++ is the C++ program for calculating LO and NLO QCD jet cross sections 
based on Catani-Seymour dipole subtraction method. (Author: Zoltan Nagy at DESY)

arXiv:hep-ph/9605323
Catani and Seymour

arXiv:hep-ph/0307268
Nagy

• , ,  and 
photo production 
processes. 

e+e− ep pp
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LO nonsingular:
arXiv:1407.6706
Kang, Lee, Stewart



: Nonsingular at LOσns
PT
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arXiv:1407.6706
Kang, Lee, Stewart

Analytic 1-loop 
nonsingular



: Nonsingular at NLOσns
PT
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NP corr.: Shape function
dσ
dτb

1
(τb

1) = ∫ dk
dσpert

dτb
1 (τb

1 −
k
Q ) F(k)

• According to OPE, 

dσ
dτb

1
(τb

1) =
dσpert(τb

1)

dτb
1

−
2Ω1

Q

dσ2
pert(τb

1)

dτb
1

2 [1 + 𝒪(ΛQCD/(τb
1Q))]

In the tail region, 
 

(translation!)
τb

1 → τb
1 − 2Ω1/Q

 is the 1st moment of :2Ω1 F(k) 2Ω1 = ∫ dk kF(k)

S(k, μ) = ∫ dk′ Spert(k − k′ , μ)F(k′ )

15

Simplest implementation 
with  and 

:
c0 = 1

λ = 0.9 GeV



NP corr.: Renormalon ambiguity

 renormalon ambiguity𝒪(ΛQCD) 16

• We employ the -gap scheme introduced in [arXiv:0806.3852, Hoang, Kluth].R

Renormalon subtraction

Before renormalon subtraction 
(shape function only)

After renormalon subtraction 
( -gap scheme)R

[e−2δ(R,μS)(d/dk)F (k − 2Δ(R, μS))]



Results and comparison with 
HERA data



Final N3LL +  prediction𝒪(α2
s )

18

• Relevant to HERA setup

• Good perturbative convergence of 
the distributions, especially in the tail 
region.

• Can observe a peak as , 
which characterizes the events with 
nearly empty jet hemisphere. 

τb
1 → 1

τb
1

Breit= 1 −
2
Q ∑

i∈ℋJ

(pi)z = τQ



Final N3LL +  prediction𝒪(α2
s )

19

• Relevant to EIC setup

• Good perturbative convergence

• Can observe the peak as , and this feature is more pronounced at smaller .τb
1 → 1 x



 and  sensitivitiesαs Ω1

Requires uncertainties below 4% for  δαs = ± 0.02 Requires uncertainties below 5% for  δΩ1 = ± 100 MeV



 and  sensitivitiesαs Ω1

• Our predictions exhibit uncertainties below 4% across large range of  and .x Q

HERA ( )s = 319 GeV EIC ( )s = 140 GeV



HERA H1 measurement
• Recently, the H1 collaboration reported the measurement of  in DIS based on the data 

sample collected in 2003-2007 ( , integrated luminosity of .
τb

1
s = 319 GeV ℒ = 351.1 pb−1

arXiv:2403.10109
H1 Collaboration

• The distribution in  given by τb
1

∫Δy
dy∫ΔQ2

dQ2 dσ
dydQ2dτb

1

22

• We can compare our theory 
predictions with these 
measurements (red box). 



HERA H1 measurement

23



HERA H1 measurement
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Summary
•  is an DIS event shape which has many advantages in experimental measurements, and 

as a global observable, can be computed with high precision. 
τb

1

• Computed the  distributions at N3LL +  accuracy, and included power 
corrections and renormalon subtractions for NP soft physics. 

τb
1 𝒪(α2

s )

• With the recent HERA measurements as well as the future EIC results,  can be used as 
an independent event shape method for the ,  determination. 

τb
1

αs Ω1

• Sensitive to hadron PDFs, so could also be used as a probe to PDFs.

Thanks!

25

• Additionally, this could work as a quantitative measure of gapped events. 



Backup



Peak as τb
1 → 1

27

•  characterizes events where nearly all final-state particles are confined to the beam 
hemisphere.  (Empty jet hemisphere)
τb

1 → 1

arXiv:1407.6706
Kang, Lee, Stewart

ℋJ is empty

τb
1 = 1

• This contribution becomes increasingly 
significant as .x → 0



Peaks as τb
1 → 1

28

• Events with  provide a quantitative measure 
of gapped events, where the jet hemisphere is 
nearly empty. 

τb
1 → 1

In Breit frame, the separation of the  
is always , regardless of  and .

ℋB,J
z = 0 x Q

• However, in the CM frame, the  takes on cone-like 
shape, with its opening angle varying based on .

ℋJ
x

Breit frame

CM frame

x = 0.05

x = 0.2

e−

e−

e−

e−

γ*

γ*

ℋB ℋJ

ℋB
ℋJ

ℋB

ℋJ



Nonsingular:  testrc(1)
• We can check the numerical results from NLOJET++ in terms of the cumulant of the 

nonsingular distribution. 

dσtotal
dτb

1
= Aδ(τb

1) + [B(τb
1)]+

+ r(τb
1)

dσs
dτb

1
= Aδ(τb

1) + [B(τb
1)]+

dσns
dτb

1
= r(τb

1)

• From the numerical results of NLOJET++, we can access the distribution for . τb
1 > 0

∫
1

0
dτb

1 [B(τb
1)]+

= 0

• Integrating the fixed-order total and the singular distribution in  from 0 to 1, we have τb
1

arXiv:0806.3852
Hoang and Kluth

arXiv:1808.07867
Bell, Hornig, Lee, Talbert

Fixed-order total

σtotal = A + ∫
1

0
dτb

1r(τb
1) σs = A where we usedand

So, from the known analytic fixed-order results for  and , we can determine the 
cumulant nonsingular distribution. 

σtotal σs
arXiv: 1005.1481, Botje (QCDNUM)

rc(1) ≡ ∫
1

0
dτb

1r(τb
1) = σtotal − σs (Analytic)

dσtotal
dτb

1

NLOJET++

τb
1>0

= B(τb
1) + r(τb

1)

dσs
dτb

1 τb
1>0

= B(τb
1)

Integrating the difference of the two quantities from 
 to 1, ( ), we obtainϵ ϵ → 0

lim
ϵ→0 ∫

1

ϵ
dτb

1r(τb
1) = lim

ϵ→0 ∫
1

ϵ
dτb

1 [
dσtotal

dτb
1

NLOJET++

τb
1>0

−
dσs
dτb

1 τb
1>0 ]

(Numerical)29



Nonsingular:  testrc(1)

At 𝒪(αs) At 𝒪(α2
s )

• So, by comparing  determined from the two independent ways, we can test the 
validity of the numerical results from NLOJET++

rc(1)

• We can clearly see the flat region from the LO result, and a bit noisier result for NLO, but 
they both correctly produce the analytic results.  (Improvable by collecting more MC events)

Integrate the nonsingular from  to some 
sufficiently small number and see if the results could 
develop the flat values predicted by the analytic 
result.

τb
1 = 1



Nonsingular:  testrc(1)
• So, by comparing  determined from the two independent ways, we can test the 

validity of the numerical results from NLOJET++
rc(1)

LO Fixed-order full QCD
LO Fixed-order singular (SCET)
LO nonsingular

τb
1

|dσ/dτb
1 |LO

Log-log plot

At Q = 80 GeV, x = 0.2, s = 300 GeV

𝒪(αs)
Integrate the nonsingular from 

 to some sufficiently 
small number and see if the 
results could develop the flat 
values predicted by the 
analytic result.

τb
1 = 1

Integrate in τb
1

NLOJET++

Analytic

τb
1

Log-linear plot

rc(1) at 𝒪(αs)

NLOJET++

Analytic

rc(1) at 𝒪(α2
s )

Log-linear plot

τb
1

• We can clearly see the flat region from the LO result, and a bit noisier result for NLO, but 
they both correctly produce the analytic results.  (Improvable by collecting more MC events)

31



SCET FT for : Resummationτb
1

• Once we establish the description for the fixed-order functions, we can implement the 
resummations of large logs in . By , we mean the summation of the following logs:τb

1 NxLL

LL NLL

NNLL N3LL

log τb
1(αs log τb

1)n ∼ 𝒪(α−1
s ) (αs log τ)n ∼ 𝒪(α0

s )

αs(αs log τ)n ∼ 𝒪(αs) α2
s (αs log τ)n ∼ 𝒪(α2

s )

( )n ≥ 1

where the last relations assumed power counting of large logs,  when .log τb
1 ∼ 1/αs τb

1 ≪ 1

• The RG equations of the hard, jet, beam, and soft functions are

μ
d

dμ
H(Q2, μ) = γH(μ)H(Q2, μ) μ

d
dμ

G(t, μ) = ∫ dt′ γG(t − t′ , μ)G(t′ , μ)

for G = {J, B}

μ
d

dμ
S(k, μ) = ∫ dk′ γS(k − k′ , μ)S(k′ , μ)

• And the corresponding anomalous dimensions are given by

γH(μ) = ΓH[αs(μ)]log
Q2

μ2
+ γH[αs(μ)] γG(t, μ) = ΓG[αs(μ)]

1
μ2 [ θ(t /μ2)

t /μ2 ]
+

+ γG[αs(μ)]δ(t)

γS(k, μ) = ΓS[αs(μ)]
1
μ [ θ(k /μ)

k /μ ]
+

+ γS[αs(μ)]δ(k)

32



SCET FT for : Profile functionτb
1

• With this choice of , we get to introduce -dependent log factors (blue) in the fixed-order 
functions, this can best be dealt with in terms of the well-established resummation factors 
(orange).

• The logs in the fixed-order function can be minimized through the following canonical 
scales:

ξ τ

We introduced a scaling parameter  to make 
the arguments of plus distributions have a 
common convolution variable, so the cross 
section is independent of . 

ξ

ξ

• The most obvious way to deal with the explicit  dependence in  is to choose 

 (but the result is independent of ).

τ FΩ
ℓ3

(τQ /ξ)
ξ ∼ τQ ξ

• In order to properly implement the -dependent scales to the SCET FT, we need the profile 
function.

τ

μH = Q, μJ = μB = τb
1 Q, μS = τb

1Q

• We can see that the relative hierarchy between these scales changes w.r.t. the value of .τb
1

33



 for DIS and thrust for τb
1 e+e−

τb
1 =

2
Q2 ∑

i∈X

min {qb
B ⋅ pi, qb

J ⋅ pi}

τe+e− = 1 − T where T = max ̂t
∑i | ̂t ⋅ ⃗pi |

∑i | ⃗pi |

arXiv:1407.6706
Kang, Lee, Stewart

34

∈ (0,1)

∈ (0,1/2)

 No minimization in ∵ qJ,B

 Minimization in 
thrust axis
∵

[when , otherwise, ] x ≤ 1/2 (1 − x)/x

• Characteristic singular behavior as τb
1 → 1

ℋJ is empty

τb
1 = 1

 at δ(1 − τ) 𝒪(αs)

Smeared at 𝒪(α2
s )

τb
1

Breit= 1 −
2
Q ∑

i∈ℋJ

(pi)z



 and other DIS 1-jettinessτb
1

• Reduces contamination from remnant fragmentation from its measurements,  
so makes it desirable to be measured in experiments. 

• Lorentz invariant, and global observable, so free of NGL 
 Can be computed with high theoretical accuracy.→
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• Another version of the DIS 1-jettiness is , and the only difference is the definition of :τa
1 qJ

arXiv:1303.6952
Kang, Lee, Stewart

qb
J = q + xP qa

J = KJ = qb
J + q⊥

J

•  is defined to a light-like vector along the jet momentum , whose light-like projection is .qa
J

μ PJ KJ

pμ
B

pμ
J

qb
J

qa
Jqa,b

B = xP

Breit

p⊥

−p⊥

•  distribution has  dependences because jet 
and beam momenta are not aligned with .

• However,  distribution has  dependence 
only on the beam momenta, so we can just 
integrate it to find the ordinary beam function.

τb
1 p2

⊥
qJ,B

τa
1 p2

⊥

• Theoretically, it is more involved to deal with the transverse-momentum dependent 
beam function, but  is Lorentz invariant. (  needs a jet algorithm, which refers to a 
specific frame.)

τb
1 τa

1



 and and  thrustτb
1 e+e−

pμ
J1

≈ 2EJ
nJ

2

pμ
J2

̂zμ
e+e−

pi

e+ e−
θJ

Pμ

qμ

pμ
J

pμ
B

̂zμ
Breit pi

γ*
p

DIS

•  and  describe event collimated along jet axes, and could be best 
described by SCET with high theory precision. (N3LL) 

• One of the nontrivial differences between  and  is one of the jet radiations in 
 should be replaced by ISR from the proton for ,  

In FT for , a jet function is replaced by the beam function. 

τb
1 ∼ 0 τe+e− ∼ 0

τb
1 τe+e−

e+e− τb
1

τb
1

36



: FT and Fixed-order functionsσs
PT

dσ
dxdQ2dτb

1
=

dσb
0

dxdQ2 ∫ dtJdtBdkS δ (τb
1 −

tJ
Q2

−
tB
Q2

−
kS

Q ) S(kS, μ)

× Jq(tJ, μ)[Hb
q(y, Q2, μ)B̂q(tB, x, μ) + (q → q̄)],

Measurement function for τb
1

Single variable soft function 

Quark jet function Hard function Projected  quark beam functionτb
1

4.  quark beam function:  

 is the -dep. beam function,  
Known to 2-loop.

τb
1 B̂q(tB, x, μ) = ∫ d2p⊥ℬq(tB − p2

⊥, x, p2
⊥, μ)

ℬq(t, x, k2
⊥, μ) k⊥ ℬi(t, x, k2

⊥, μ) = ℐij(t, x /ξ, k2
⊥, μ) ⊗ξ fj(ξ, μ)

PDF for parton j

arXiv:1409.8281,  
Gaunt, Stahlhofen

arXiv:1401.5478,  
Gaunt, Stahlhofen, Tackmann

2. Quark jet function: 2-loop

• Our target theory precision is N3LL + , so we need 2-loop fixed-order expressions 
for each parts of FT:

𝒪(α2
s )

1. Hard function:  through neutral currents ( ): 2-loopqq → qq γ*, Z*
arXiv:hep-ph/0607228,  
Becher, Neubert, Pecjak 

arXiv:hep-ph/0605068,  
Idilbi, Ji, Yuan

arXiv:1006.3080,  
Abbate, Fickinger, Hoang, Mateu, Stewart

arXiv:hep-ph/0607228,  
Becher, Neubert, Pecjak 

3. Soft function: 2-loop arXiv:1105.3676,  
Kelley, Schabinger, Schwartz, Zhu 
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: Resummationσs
PT

arXiv:1911.10174 
Henn, Korchemsky, Mistlberger

4-loop cusp anomalous dimension

arXiv:1407.6706
Kang, Lee, Stewart

Analytic 1-loop 
nonsingular

Numerical 2-loop 
(NLOJet++)

• The resulting FT for the cumulant singular distributions after resummation:

Log resummation 

Lepton parts and PDFs 

Fixed-order functions
(Coefficients of plus 
distributions)

Convolutions of plus distributions 
(momentum space formulation)

 are the functions of the scales  and the  (arbitrary scale, usually set to be 

)

𝒦 and Ω μH,B,J,S μgoal
μgoal ∼ μJ,B

38



: Profile functionσs
PT

• The natural scales for fixed-order functions are .μH = Q, μJ = μB = τb
1 Q, μS = τb

1Q

• Depending on the values of , we have quite different physical description:τb
1

- Peak region:

- Tail region:

- Far-tail region:

τb
1 ∼ 2ΛQCD/Q ≪ 1

2ΛQCD/Q ≪ τb
1 ≪ 1

τb
1 ∼ 1

Peak region

Tail region

Far-tail region

μ0 = 1.1 GeV
Frozen scale

39

Depend on x • A characteristic feature of our profile is 
that it changes w.r.t.  and , because the 
relative importance of the singular and 
nonsingular changes in .

Q x

x

xc = 0.0001234



: Profile functionσs
PT

40

• The tail region (resummation region) with the canonical scales move w.r.t.  and .Q x



: Scale variationsσs
PT

41



LO Fixed-order full QCD
LO Fixed-order singular (SCET)
LO nonsingular

τb
1

|dσ/dτb
1 |LO

Log-log plot

𝒪(αs)

: Profile functionσs
PT

Fixed-order singular vs. nonsingular

Crossing point τb
1 ∼ 0.25

Q = 80 GeV, x = 0.2
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t2 =
1� log(x+ xc)

10
xc = 0.0001234

•  is set to depend 
on , below which the 
singular contribution 
gets larger than the 
nonsingular. 

 resummation matter!

τ = t2
x

→



: PDF setsσs
PT

4.  quark beam function:  

 is the -dep. beam function, 

τb
1 B̂q(tB, x, μ) = ∫ d2p⊥ℬq(tB − p2

⊥, x, p2
⊥, μ)

ℬq(t, x, k2
⊥, μ) k⊥ ℬi(t, x, k2

⊥, μ) = ℐij(t, x /ξ, k2
⊥, μ) ⊗ξ fj(ξ, μ)

PDF for parton j

• NNPDF4.0 NNLO PDF set 
implemented in LHAPDF.

• PDFs are determined w.r.t.  
value.

• Should change PDFs for 
different  simultaneously. 

αs

αs
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