Diffraction and small-x dynamics at the EIC Stella Schindler Los Alamos National Laboratory

Uncovering New Laws of Nature at the EIC Brookhaven National Laboratory Thursday, November 21, 2024

LA-UR-24-32331

<u>Collaborators</u> Iain Stewart (MIT) Kyle Lee (MIT)

What is happening in these collisions?

2

Figs: CERN.

Normal

Gapped (Diffraction)

Diffractive ep collision

Many other types of diffractive collisions

- \blacktriangleright 10% of HERA events
- \geq 20% of EIC events
- ➢ 30% of inelastic LHC events

Current state of diffractive understanding

Collins' factorization of the hard physics in diffraction: $F_{2/L}^D = H_{2/L}^{(i)} \otimes f_i^D$ (Diffractive PDF)

Berera/Soper, hep-ph/9509239. Collins, hep-ph/9709499.

Large Q^2

These papers note that they do not rigorously factorize the forward scattering dynamics ("**Regge factorization**")

How well can we do without a full factorization?

Figure: ATLAS, 1911.00453. $\sqrt{s} = 8 TeV$, $0.016 < |t| < 0.43 \text{ GeV}^2$, $-4.0 < \log_{10} \xi < -1.6$

Distinguishing diffraction from backgrounds

Tool building for small x physics

1950s Pomeron & Reggeon description of high-energy scattering

(Regge, Pomeranchuk, Chew, Frautschi...)

- 1973Development of QCD
(Gross, Politzer, Wilczek)
- **1977** BFKL equation for small-*x* evolution (Balitsky, Fadin, Kuraev, Lipatov)
- **1983**Discussion of saturation
(Gribov, Levin, Ryskin)
- **1986** Nonlinear corrections to DGLAP (Mueller, Qiu)
- **1994** Color Glass Condensate formalism for saturation regime (McLerran, Venugopalan)
- **1999** BK/JIMWLK equations, smaller-*x* evolution (Balitsky, Kovchegov, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner)

2016 A new tool for forward physics: Glauber SCET (Rothstein, Stewart)

Effective field theory (EFT), schematically

Collisions generally involve many distinct energy scales

> We can separately calculate the physics at each scale

Figure: I. Stewart. See e.g. 2303.02579.

Constraints on (quasi-)diffraction

SCET is a useful EFT for diffraction

Factorizing (quasi-)diffraction using SCET

$$F_i^D = \frac{B}{2} \bigotimes_{\perp} S_i \bigotimes_{\pm} \frac{U}{2}$$

Beam function	Ultrasoft-collinear function	Soft function
Hadronic physics	Radiation into gap	Central region
Hadronic matrix element of SCET operators	Vacuum matrix element of Wilson line operators	Vacuum matrix element of SCET operators

Factorizing (quasi-)diffraction using SCET

$$\boldsymbol{F}_{\boldsymbol{i}}^{\boldsymbol{D}} = \sum_{N,N'=1}^{\infty} \sum_{\{R_X\}} \iint_{(N,N')}^{\perp} \int dp_n^+ dp_s^- dp_g^+ dp_g^- (2\pi)^2 \,\delta \big(Qz - p_n^+ - p_g^+ \big) \,\delta \big(Q/\beta - p_s^- - p_g^- \big) \, \boldsymbol{B} \, \boldsymbol{U} \, \boldsymbol{S}$$

$$\boldsymbol{B} = \int [d\tilde{v}] e^{\frac{i}{2}v^{-}p_{n}^{+}} \sum_{Y_{n}} \langle p | \{\!\!\{ \prod_{i=1}^{N-1} \mathcal{O}_{n}^{A_{i}}(\tilde{v},\tau_{i\perp}) \bar{\mathcal{O}}_{n}^{A_{N}}(\tilde{v}) \!\!\} P_{NR_{A}} | Y_{n} \rangle \langle Y_{n} | P_{N'R_{A}} \{\!\!\{ \prod_{j=1}^{N'-1} \mathcal{O}_{n}^{A'_{j}}(0,\tau'_{j\perp}) \bar{\mathcal{O}}_{n}^{A'_{N'}}(0) \!\!\} | p \rangle$$

$$\boldsymbol{U} = \frac{N_{\vec{R}}}{4} \int dy^{+} dy^{-} e^{\frac{i}{2}y^{+}\bar{p}_{g}^{-} + \frac{i}{2}y^{-}\bar{p}_{g}^{+}} \sum_{X'_{uc}} \langle 0 | P_{NR_{A}}\bar{T} \prod_{i=1}^{N} \mathbb{U}_{n\bar{n}}^{A_{i}B_{i}}(y^{+}, y^{-}) P_{NR_{B}} | X'_{uc} \rangle \langle X'_{uc} | P_{N'R_{A'}}T \prod_{j=1}^{N'} \mathbb{U}_{n\bar{n}}^{A'_{j}B'_{j}}(0) P_{N'R_{B'}} | 0 \rangle$$

$$\begin{split} \boldsymbol{S} &= \int [d\tilde{y}_{1}] \left[d\tilde{y}_{1}^{\prime} \right] d^{d}z \; e^{\frac{i}{2}(y_{1}^{+} - y_{1}^{\prime+})p_{s}^{-}} e^{+iz \cdot q} \mathcal{P}_{i\,\mu\nu} \\ & \times \sum_{X_{s}} \left\langle 0 \big| \bar{T} J_{s}^{\mu}(z) \left\{ \prod_{i=1}^{N} \mathcal{O}_{s}^{B_{i}}(\tilde{y}_{1}, -\tau_{i\perp}) \right\} \mathcal{P}_{NR_{B}} \big| X_{s} \right\rangle \\ & \times \left\langle X_{s} \big| \mathcal{P}_{N'R_{B'}} T J_{s}^{\nu}(0) \left\{ \prod_{j=1}^{N'} \mathcal{O}_{s}^{B'_{j}}(\tilde{y}_{1}^{\prime}, -\tau_{j\perp}^{\prime}) \right\} \big| 0 \right\rangle \end{split}$$

12

Diffraction vs quasi-diffraction

$$F_i^D = B \otimes S$$

- > Color singlet: U is a δ -function
- Nontrivial result: can't radiate into the gap!

Many predictions we can make

Color singlet & nonsinglet exchange have similar size

15

Radiation into the gap

Can't measure color of incoherent exchange

Irreducible color-nonsinglet (quasi-diffractive) background!

What type of PDF does diffraction access?

$$\boldsymbol{B} = \int [d\tilde{v}] e^{\frac{i}{2}v^{-}p_{n}^{+}} \sum_{Y_{n}} \langle p | \{\!\!\!\{ \prod_{i=1}^{N-1} \mathcal{O}_{n}^{A_{i}}(\tilde{v},\tau_{i\perp}) \bar{\mathcal{O}}_{n}^{A_{N}}(\tilde{v}) \}\!\!\} P_{NR_{A}} | Y_{n} \rangle \langle Y_{n} | P_{N'R_{A}} \{\!\!\!\{ \prod_{j=1}^{N'-1} \mathcal{O}_{n}^{A'_{j}}(0,\tau'_{j\perp}) \bar{\mathcal{O}}_{n}^{A'_{N'}}(0) \}\!\!\} | p \rangle$$

Many beam function topologies, e.g.

Ongoing work:

> What is the nature of the diffractive beam function?

> Does it match onto any traditional PDFs, etc., in any limits?

Much more we can do now...

EFT vs. Collins' hard scattering approach

SCET:
$$F_j^D(x, Q^2, \beta, t, m_Y^2) = \mathcal{P}_j^{\mu\nu} S_{\mu\nu}(Q^2, \beta, t, \tau_{i\perp}) \otimes B(t, m_Y^2, \tau_{i\perp})$$

Collins:
$$F_{2/L}^D(x, Q^2, \beta, t) = H_{2/L}^{(i)}\left(\frac{\beta}{\zeta}, Q^2\right) \otimes f_i^D\left(\zeta, Q^2, \frac{x}{\beta}, t\right)$$

"Diffractive PDF"

Differences:

- > SCET $\lambda = Q/\sqrt{s} \ll 1$ vs. Collins $\lambda_t = \sqrt{-t}/Q \ll 1$
- As explained by Collins, his formula does <u>not</u> include the Regge factorization for forward physics at bottom vertex
- \triangleright However, these results should match for $\lambda \& \lambda_t \ll 1$

Regge factorization of dPDF

SCET:
$$F_j^D(x, Q^2, \beta, t, m_Y^2) = \mathcal{P}_j^{\mu\nu} S_{\mu\nu}(Q^2, \beta, t, \tau_{i\perp}) \otimes B(t, m_Y^2, \tau_{i\perp})$$

Collins:
$$F_{2/L}^D(x, Q^2, \beta, t) = H_{2/L}^{(i)}\left(\frac{\beta}{\zeta}, Q^2\right) \otimes f_i^D\left(\zeta, Q^2, \frac{x}{\beta}, t\right)$$

Refactorize dPDF for $\lambda \& \lambda_t \ll \mathbf{1}$, giving $F = H \otimes S_c \otimes B'$:

$$f_i^D\left(\zeta, Q^2, \frac{x}{\beta}, t, m_Y^2\right) = S_c(\zeta, Q, t) \otimes B'(Qz, t, m_Y^2)$$

Comparison to Ingelman-Schlein (λ , $\lambda_t \ll 1$)

21

SCET: $f_i^D\left(\zeta, Q^2, \frac{x}{\beta}, t, m_Y^2\right) = S_c(\zeta, Q, t) \otimes B'(Qz, t, m_Y^2)$

IS model: $f_i^D\left(\zeta, Q^2, \frac{x}{\beta}, t\right) = f_{i/\mathbb{P}}(\zeta, Q^2) \times f_{\mathbb{P}/p}\left(\frac{x}{\beta}, t\right)$

Differences:

- Convolution vs. multiplication
- Number and nature of arguments
- Transverse momentum dependence vs. longitudinal-type PDFs

Summary

- 1. Four interesting structure functions
- 2. First all-orders Regge (forward) factorization
- 3. Study of backgrounds (e.g. color nonsinglet)
- 4. Experimental implications

Next steps:

- Precision physics: Higher order, resummation, ...
- Underlying physics: Behavior in saturation regime? Connection to PDFs/GPDs/etc. in any limit?
- Other cases: Hadron colliders, semi-inclusive processes, more jets/gaps, etc.

New horizons for HEP theorists?

- Theory: New tools for EIC physics can naturally extend to HEP-focused colliders like the LHC
- Phenomenology: Improves understanding of Standard Model physics, which enables studies of new physics in the far-forward region
- Experiment: Better understanding of diffraction can improve tracking of luminosity, understanding pile-up, building MC generators

Backup slides

Lorentz invariants

	Energy scales	Momentum fractions
Familiar from DIS	$Q^{2} = -q^{2}$ $W^{2} = (p+q)^{2}$ $s = (p+k)^{2}$	$oldsymbol{x} = rac{Q^2}{2p \cdot q}$ $oldsymbol{y} = rac{p \cdot q}{p \cdot k}$
Diffraction	$t = \tau^2 < 0$ $m_Y^2 = p'^2 > 0$ $m_X^2 = p_X^2 > 0$	$\boldsymbol{\beta} = \frac{Q^2}{2q \cdot \tau}$ $\boldsymbol{\overline{x}} = \frac{k \cdot \tau}{k \cdot p}$ $\boldsymbol{z} = \frac{p \cdot p}{p \cdot q}$

Largely unexplored variable \bar{x}

Note that only 7 of these are linearly independent

New kinematic bounds

Lee, Schindler, & Stewart, in preparation.

Constructing structure functions

Constraints: $q_{\mu}W_D^{\mu\nu} = 0$ and $W_D^{\mu\nu} = W_D^{\nu\mu}$ > Convenient to build orthonormal basis $q^{\mu} \perp U^{\mu} \perp X^{\mu}$

$$\begin{split} W_D^{\mu\nu} &= \frac{1}{2x} \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) F_L^D + \frac{1}{2x} \left(U^{\mu}U^{\nu} - g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) F_2^D \\ &+ \frac{1}{2x} \left(2X^{\mu}X^{\nu} - U^{\mu}U^{\nu} + g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{q^2} \right) F_3^D + \frac{U^{\mu}X^{\nu} + X^{\mu}U^{\nu}}{2x} F_4^D \end{split}$$

Literature often neglects
$$F_3^D \& F_4^D$$
!

Lee, Schindler, Stewart, in prep. Arens et al, hep-ph/9605376. Blumlein/Robaschik, hep-ph/0106037,0202077.

Coefficients

$$\begin{aligned} \mathbf{L}_{\mu\nu} W_D^{\mu\nu} &= \frac{2s}{y} \left[-\frac{y^2}{2} \mathbf{F}_L^{\mathbf{D}} + \left(1 - y + \frac{y^2}{2} \right) \mathbf{F}_2^{\mathbf{D}} \right. \\ &+ \left(\frac{2(\mathbf{k} \cdot \mathbf{X})^2 y^2}{Q^2} - 1 + y \right) \mathbf{F}_3^{\mathbf{D}} + \frac{2y^2(\mathbf{k} \cdot \mathbf{X})(k \cdot U)}{Q^2} \mathbf{F}_4^{\mathbf{D}} \right] \end{aligned}$$

 $\overline{x} \& y$ only appear in coefficients, not $F_i^D(x, Q^2, \beta, t, m_Y^2)$

How to miss $F_{3,4}^D$:

- \succ Integrate over \bar{x}
- \blacktriangleright Assume $p' \parallel p$

Coefficients:

 $k \cdot X = Q^2 \frac{x - \overline{x}\beta - (2 - y)xz\beta}{2N_X xy\beta}$ $k \cdot U = \frac{Q(2 - y)}{2y}$

Auxiliary:

$$N_X^2 = -t + z^2 Q^2 - \frac{z Q^2}{\beta}$$
$$\Rightarrow z = \frac{x}{Q^2} (m_Y^2 - t)$$

Lee, Schindler, & Stewart, in preparation.

Seeing $F_{3,4}^D$ in experiments

Coefficients are large, **but** need good angular resolution at small t

Summary of kinematics

	Our work	Most of the literature
Independent invariants	7 (DIS + \overline{x} , t, β , m_Y^2)	6 (No <u>x</u>)
Unpolarized structure functions	4	2
Polarized structure functions	14 (4 nonzero at leading power)	2

+ Classification of backgrounds+ New kinematic bounds

Lee, **Schindler**, & Stewart, in preparation. Diffractive literature: see e.g. EIC Yellow Report, 2103.05419. Exceptions: Arens et al., hep-ph/9605376. Blumlein & Robaschik, hep-ph/0202077.

Advantages of EFT

$$\mathcal{L}_{\text{QCD}} \rightarrow \lambda^0 \mathcal{L}_{\text{EFT}}^{(0)} + \lambda^1 \mathcal{L}_{\text{EFT}}^{(1)} + \lambda^2 \mathcal{L}_{\text{EFT}}^{(2)} + \cdots$$

Power expansion, efficient for multi-scale problems
 Calculations are systematically improvable, to arbitrary precision

Simplifies study of:

- Factorization
- Perturbative calculations
- ➢ Resummation
- Power corrections

Figure: I. Stewart.

SCET Lagrangian

SCET operators

Example:

The upshot of EFT: Helpful for organizing calculations for multi-scale problems

Rothstein & Stewart, 1601.04695.

SCET modes in diffraction

Further expansions & refactorizations

Optional:
$$\lambda_t = \frac{\sqrt{-t}}{Q}, \ \lambda_g = \frac{E_{\text{cut}}}{Q}, \ \rho = \frac{m_Y}{\sqrt{-t}}, \ \lambda_\Lambda = \frac{\Lambda_{\text{QCD}}}{Q}$$

Subject to bounds, can have $\lambda_i \ll 1$, $\lambda_i \sim 1$, or $\lambda_i \gg 1$