Baryon number dynamics from RHIC to the EIC

David Frenklakh

Brookhaven National Laboratory

2312.15039 with D. Kharzeev and W. Li 2405.04569 with D. Kharzeev, G. Rossi and G. Veneziano

Uncovering New Laws of Nature at the EIC

Brookhaven National Laboratory, Upton, NY, USA November 20-22, 2024

MASS

SPIN

 $\frac{1}{2} = \frac{\Delta \Sigma}{2} + \Delta g + L_q + L_g$

MASS

SPIN

 $\frac{1}{2} = \frac{\Delta \Sigma}{2} + \Delta g + L_q + L_g$

What about baryon number?

- Baryon junctions overview/experimental status
- New theory results on Regge intercepts
- Semi-inclusive DIS and novel experimental signatures

$$B(x_1, x_2, x_3) = \epsilon^{ijk} q(x_1)_i \ q(x_2)_j q(x_3)_k$$

$$B(x_1, x_2, x_3) = \epsilon^{ijk} q(x_1)_i \ q(x_2)_j q(x_3)_k$$

Gauge invariance

$$B(x_1, x_2, x_3) = \epsilon^{ijk} q(x_1)_i \ q(x_2)_j q(x_3)_k$$

Gauge invariance

 $B(x_1, x_2, x_3, x) = \epsilon^{ijk} \left[P(x_1, x) q(x_1) \right]_i \left[P(x_2, x) q(x_2) \right]_j \left[P(x_3, x) q(x_3) \right]_k$

$$P(x_n, x) \equiv \mathcal{P} \exp\left(ig \int_{x_n}^x A_\mu dx^\mu\right)$$

G.C. Rossi and G. Veneziano, Nucl. Phys. B 123 (1977)

Can baryon junction carry the baryon number?

Baryon stopping in pp and AA

Can gluons trace baryon number?

D. Kharzeev Physics Letters B 378 (1996) 238-246

Dashed lines denote junctions

Baryon stopping in pp and AA

Can gluons trace baryon number?

D. Kharzeev Physics Letters B 378 (1996) 238-246

Dashed lines denote junctions

Baryon stopping in pp and AA Can gluons trace baryon number? D. Kharzeev Physics Letters B 378 (1996) 238-246 $\frac{dN}{dy} \propto e^{(\alpha_{\mathbb{P}} + \alpha_{\mathbb{J}_0} - 2)Y/2} \left[e^{(\alpha_{\mathbb{P}} - \alpha_{\mathbb{J}_0})y} + e^{(\alpha_{\mathbb{J}_0} - \alpha_{\mathbb{P}})y} \right]$ $\alpha_{\mathbb{P}} = 1 + \Delta \approx 1.08$ $\alpha_{\mathbb{J}_0} \approx 0.5$ G.C. Rossi and G. Veneziano, Nucl. Phys. B 123 (1977) р -Y/2B Dashed lines denote junctions

Baryon stopping in pp and AA Can gluons trace baryon number? D. Kharzeev Physics Letters B 378 (1996) 238-246 $\frac{dN}{dy} \propto e^{(\alpha_{\mathbb{P}} + \alpha_{\mathbb{J}_0} - 2)Y/2} \left[e^{(\alpha_{\mathbb{P}} - \alpha_{\mathbb{J}_0})y} + e^{(\alpha_{\mathbb{J}_0} - \alpha_{\mathbb{P}})y} \right]$ $\alpha_{\mathbb{P}} = 1 + \Delta \approx 1.08$ $\alpha_{\mathbb{J}_0} \approx 0.5$ ≡вД G.C. Rossi and G. Veneziano, Nucl. Phys. B 123 (1977) р -Y/2 $\propto e^{-0.42Y/2} [e^{0.58y} + e^{-0.58y}]$ Dashed lines denote junctions \overline{du} 13

Search for baryon junctions in photonuclear processes and isobar collisions at RHIC

Nicole Lewis¹, Wendi Lv², Mason Alexander Ross³, Chun Yuen Tsang⁴, James Daniel Brandenburg⁵, Zi-Wei Lin³, Rongrong Ma¹, Zebo Tang², Prithwish Tribedy^{1,a}, Zhangbu Xu⁴

Search for baryon junctions in photonuclear processes and isobar collisions at RHIC

Nicole Lewis¹, Wendi Lv², Mason Alexander Ross³, Chun Yuen Tsang⁴, James Daniel Brandenburg⁵, Zi-Wei Lin³, Rongrong Ma¹, Zebo Tang², Prithwish Tribedy^{1,a}, Zhangbu Xu⁴

Search for baryon junctions in photonuclear processes and isobar collisions at RHIC

Nicole Lewis¹, Wendi Lv², Mason Alexander Ross³, Chun Yuen Tsang⁴, James Daniel Brandenburg⁵, Zi-Wei Lin³, Rongrong Ma¹, Zebo Tang², Prithwish Tribedy^{1,a}, Zhangbu Xu⁴

2309.06445

Correlations of baryon and charge stopping in heavy ion collisions^{*}

Wendi Lv (吕文棣)¹, Yang Li (李洋)¹, Ziyang Li (李子阳)¹, Rongrong Ma (马荣荣)², Zebo Tang (唐泽波)¹, Prithwish Tribedy², Chun Yuen Tsang³, Zhangbu Xu (许长补)² and Wangmei Zha (查王妹)¹

Search for baryon junctions in photonuclear processes and isobar collisions at RHIC

Nicole Lewis¹, Wendi Lv², Mason Alexander Ross³, Chun Yuen Tsang⁴, James Daniel Brandenburg⁵, Zi-Wei Lin³, Rongrong Ma¹, Zebo Tang², Prithwish Tribedy^{1,a}, Zhangbu Xu⁴

2309.06445 Correlations of baryon and charge stopping in heavy ion collisions^{*}

Wendi Lv (吕文棣)¹, Yang Li (李洋)¹, Ziyang Li (李子阳)¹, Rongrong Ma (马荣荣)², Zebo Tang (唐泽波)¹, .0 Prithwish Tribedy², Chun Yuen Tsang³, Zhangbu Xu (许长补)² and Wangmei Zha (查王妹)¹

Search for baryon junctions in photonuclear processes and isobar collisions at RHIC

Nicole Lewis¹, Wendi Lv², Mason Alexander Ross³, Chun Yuen Tsang⁴, James Daniel Brandenburg⁵, Zi-Wei Lin³, Rongrong Ma¹, Zebo Tang², Prithwish Tribedy^{1,a}, Zhangbu Xu⁴

2309.06445

Correlations of baryon and charge stopping in heavy ion collisions^{*}

Wendi Lv (吕文棣)¹, Yang Li (李洋)¹, Ziyang Li (李子阳)¹, Rongrong Ma (马荣荣)², Zebo Tang (唐泽波)¹, Prithwish Tribedy², Chun Yuen Tsang³, Zhangbu Xu (许长补)² and Wangmei Zha (查王妹)¹

Search for baryon junctions in e+A collisions at the Electron Ion Collider

2408.07131

2205.05685

Niseem Magdy,^{1, 2, 3, *} Abhay Deshpande,^{4, 5, 2} Roy Lacey,^{1, 4} Wenliang Li,^{4, 2} Prithwish Tribedy,⁵ and Zhangbu Xu^{6, 5}

Search for baryon junctions in e+A collisions at the Electron Ion Collider

2408.07131

Niseem Magdy,^{1, 2, 3, *} Abhay Deshpande,^{4, 5, 2} Roy Lacey,^{1, 4} Wenliang Li,^{4, 2} Prithwish Tribedy,⁵ and Zhangbu Xu^{6, 5}

Search for baryon junctions in photonuclear processes and isobar collisions at RHIC

Nicole Lewis¹, Wendi Lv², Mason Alexander Ross³, Chun Yuen Tsang⁴, James Daniel Brandenburg⁵, Zi-Wei Lin³, Rongrong Ma¹, Zebo Tang², Prithwish Tribedy^{1,a}, Zhangbu Xu⁴

2309.06445

Correlations of baryon and charge stopping in heavy ion collisions^{*}

Wendi Lv (吕文棣)¹, Yang Li (李洋)¹, Ziyang Li (李子阳)¹, Rongrong Ma (马荣荣)², Zebo Tang (唐泽波)¹, Prithwish Tribedy², Chun Yuen Tsang³, Zhangbu Xu (许长补)² and Wangmei Zha (查王妹)¹

Search for baryon junctions in e+A collisions at the Electron Ion Collider

2408.07131

2205.05685

Niseem Magdy,^{1, 2, 3, *} Abhay Deshpande,^{4, 5, 2} Roy Lacey,^{1, 4} Wenliang Li,^{4, 2} Prithwish Tribedy,⁵ and Zhangbu Xu^{6, 5}

Tracking the baryon number with nuclear collisions

2408.15441

STAR Collaboration

2408.07131

Niseem Magdy,^{1, 2, 3, *} Abhay Deshpande,^{4, 5, 2} Roy Lacey,^{1, 4} Wenliang Li,^{4, 2} Prithwish Tribedy,⁵ and Zhangbu Xu^{6, 5}

2408.15441

Tracking the baryon number with nuclear collisions

Search for baryon junctions in photonuclear processes and isobar collisions at RHIC

Nicole Lewis¹, Wendi Lv², Mason Alexander Ross³, Chun Yuen Tsang⁴, James Daniel Brandenburg⁵, Zi-Wei Lin³, Rongrong Ma¹, Zebo Tang², Prithwish Tribedy^{1,a}, Zhangbu Xu⁴

2309.06445 col

Correlations of baryon and charge stopping in heavy ion collisions^{*}

Wendi Lv (吕文棣)¹, Yang Li (李洋)¹, Ziyang Li (李子阳)¹, Rongrong Ma (马荣荣)², Zebo Tang (唐泽波)¹, Prithwish Tribedy², Chun Yuen Tsang³, Zhangbu Xu (许长补)² and Wangmei Zha (查王妹)¹

Search for baryon junctions in e+A collisions at the Electron Ion Collider

2408.07131

2205.05685

Niseem Magdy,^{1, 2, 3, *} Abhay Deshpande,^{4, 5, 2} Roy Lacey,^{1, 4} Wenliang Li,^{4, 2} Prithwish Tribedy,⁵ and Zhangbu Xu^{6, 5}

Tracking the baryon number with nuclear collisions

2408.15441

STAR Collaboration

Beam energy dependence of net-hyperon yield and its implication on baryon transport

mechanism

2409.06492

Chun Yuen Tsang^{a,b}, Rongrong Ma^b, Prithwish Tribedy^b, Zhangbu Xu^{a,b}

Beam energy dependence of net-hyperon yield and its implication on baryon transport mechanism

2409.06492

Chun Yuen Tsang^{a,b}, Rongrong Ma^b, Prithwish Tribedy^b, Zhangbu Xu^{a,b}

RHIC Beam Energy Scan data

Experimental rapidity slope: $\sim 0.65 \pm 0.1$ $2 - \alpha_{\mathbb{P}} - \alpha_{\mathbb{J}_0}$

RHIC Beam Energy Scan data

Experimental rapidity slope: $\sim 0.65 \pm 0.1$ $2 - \alpha_{\mathbb{P}} - \alpha_{\mathbb{J}_0}$ New theory input on $\alpha_{\mathbb{J}_0}$

Topological expansion + Feynman-Wilson gas accounting for correlations in three strings breaking: $\alpha_{\mathbb{J}_0} \simeq 0.26$ 2405.04569

RHIC Beam Energy Scan data

Experimental rapidity slope: $\sim 0.65 \pm 0.1$ $2 - \alpha_{\mathbb{P}} - \alpha_{\mathbb{J}_0}$ New theory input on $\alpha_{\mathbb{J}_0}$

Topological expansion + Feynman-Wilson gas accounting for correlations in three strings breaking: $\alpha_{J_0} \simeq 0.26$ 2405.04569

	Rapidity slope	$lpha \mathbb{J}_0$ intercept
Experiment	$\sim 0.65 \pm 0.1$	
"Old" theory	0.42	0.5
"New" theory	0.66	0.26

What other processes can probe the carrier of baryon number?

Initial motivation: exclusive ω production

W. B. Li et al. Phys. Rev. Lett. **123**, 182501

Significant fraction of events with the proton in the γ^* fragmentation region

Initial motivation: exclusive ω production

W. B. Li et al. Phys. Rev. Lett. **123**, 182501

Significant fraction of events with the proton in the γ^* fragmentation region

Entire baryon is exchanged in the t-channel Cannot separate the junction from valence quarks

Initial motivation: exclusive ω production

in the t-channel

W. B. Li et al. Phys. Rev. Lett. **123**, 182501

Significant fraction of events with the proton in the γ^* fragmentation region

Cannot separate the junction from valence quarks

Need a semi-inclusive process

Semi-inclusive deep inelastic scattering (DIS)

 $\gamma^* p$ center of mass frame:

$$p_{\gamma^*} = (\frac{\sqrt{s}}{2}, \frac{\sqrt{s}}{2}, 0^{\perp})$$

$$p_p = (\frac{\sqrt{s}}{2}, -\frac{\sqrt{s}}{2}, 0^{\perp})$$

 $p_B = (m_t \cosh y^*, m_t \sinh y^*, p_B^{\perp})$

Mueller-Kancheli theorem

A.H. Mueller, Phys. Rev. D 2 (1970) 2963. O.V. Kancheli, JETP Lett. 11 (1970) 397.

Optical theorem:

Generalized to semi-inclusive scattering: Study in Regge theory $\frac{d}{dq^3} \sum_{x} \left| \begin{array}{c} p_1 & q \\ p_2 & p_2 \end{array} \right|^2 \sim \text{Disk} \xrightarrow{p_1 & p_1 \\ -q \\ p_2 & p_2 \end{array} \right|^2$

Basics of Regge theory

S-matrix unitarity + analyticity + crossing symmetry

fix the leading behavior of scattering amplitudes at very high energy.

For $2 \rightarrow 2$ scattering $\mathcal{A}(s,t) \sim s^{\alpha(t)}$ at $s \gg |t|, m^2$ where $\alpha(t) = \alpha(0) + \alpha' t$ are Regge trajectories containing physical states that can be exchanged in the *t*-channel. Then $\alpha(M^2) = J$ - spin of the exchanged state

Cross sections in Regge theory

Total inclusive cross-section: optical theorem + Regge behavior of the amplitude

$$\sigma_{tot} \simeq \frac{1}{s} \operatorname{Im} \mathcal{A}(s, t = 0) \sim \frac{1}{s} s^{\alpha(0)} = s^{\alpha(0)-1}$$

Exclusive $2 \rightarrow 2$ cross-section:

$$\frac{d\sigma}{dt} \propto \frac{|\mathcal{A}(s,t)|^2}{s^2} \sim s^{2\alpha(t)-2}$$

When integrated over t the largest $\alpha(t) = \alpha(0)$ dominates:

$$\sigma_{2\to 2} \sim s^{2\alpha(0)-2}$$

The Pomeron

All reliably known mesons and baryons have Regge intercept $\alpha(0) < 1$.

Does it imply $\sigma_{tot} \sim s^{\alpha(0)-1}$ decreases with c.o.m. energy?

Experiment: NO! Instead, it steadily grows

Introduce a new object in Regge theory: the Pomeron

$$\alpha_{\mathbb{P}} = 1 + \Delta \simeq 1.08$$

It has vacuum quantum numbers and dominates any inclusive hadronic process at very high energy.

$3 \rightarrow 3$ forward scattering in double Regge limit

$$\mathcal{A}(s,t) \propto s^{\alpha(t)}, s \to \infty$$

$$s_1 = (p_1 + p_B)^2 = \sqrt{s} m_t e^{-y^*}$$
$$s_2 = (p_2 + p_B)^2 = \sqrt{s} m_t e^{y^*}$$

$$E_B \frac{d^3 \sigma}{dp_B^3} \propto s_1^{\alpha_{\mathbb{P}}(0)-1} s_2^{\alpha_{\mathbb{J}}(0)-1}$$

The largest $\alpha_{\mathbb{J}}(0)$ is leading

Three possible processes

Mueller-Kancheli t-channel exchanges:

Intercept estimates: G.C. Rossi and G. Veneziano, Nucl. Phys. B 123 (1977)

Three possible processes

Mueller-Kancheli t-channel exchanges:

Intercept estimates: G.C. Rossi and G. Veneziano, Nucl. Phys. B 123 (1977)

Rapidity distribution of baryons in DIS

$$E_B \frac{d^3\sigma}{dp_B^3} \propto s_1^{\alpha_{\mathbb{P}}(0)-1} s_2^{\alpha_{\mathbb{J}_0}(0)-1}$$

$$s_1 = (p_1 + p_B)^2 = \sqrt{s} m_t e^{-y^*}$$
$$s_2 = (p_2 + p_B)^2 = \sqrt{s} m_t e^{y^*}$$

assuming $\alpha_{\mathbb{P}}(0) \approx 1$, $\alpha_{\mathbb{J}_0}(0) \approx 0.5$

$$E_B \frac{d^3\sigma}{dp_B^3} \propto s^{-1/4} e^{-y^*/2}$$

Prediction for the EIC

For pp collision the derivation is similar but the final baryon can arise from either of the two initial ones. 39

- Accounting for inter-species correlations in Feynman-Wilson gas is in excellent agreement with RHIC baryon stopping data
- Search for signatures of baryon junctions in semi-inclusive DIS:

Beam energy dependence and rapidity distribution of net baryon number
Flavor composition independence
Large multiplicity of mesons in the baryon rapidity gap