EPIC Far-Forward Weekly Meeting

Far-Forward detectors with ePIC simulation - toward preTDR

24 September 2024

Zvi Citron¹, Eden Mautner¹, Valeriy Zhezher¹, <u>Michael Pitt</u>^{1,2}

¹*Ben Gurion University of the Negev (IL) 2The University of Kansas (US)*

אוניברסיטת בן-גוריון בנגב جامعة بن غوريون في النقب Ben-Gurion University of the Negev

Outline

Updates

B0 detector geometry was updated and will be requested to be merged with the main branch ([New_B0ECAL_geo](https://github.com/eic/epic/tree/New_B0ECAL_geo))

- \checkmark B0 ECAL geometry is fully configurable and matches the CAD and shifted by 15 cm
- ➢ Consequence: B0 Tracker layers were rearranged to match new B0ECAL position

Analysis

- B0 detector performance for photons / neutrons / protons with a new branch
- Interplay with the rest of the Far-Forward detectors

Simulation status – B0 geometry

• Default geometry (master branch on Aug 19):

B0 magnet:

- Length $= 1.2$ m
- Positioned at (-0.14578, 0, 6.4) meter
- Distance from IP 580 cm, $r = 20$ cm
- Aligned with respect to the electron beam

Simulation status – B0 geometry (pending update)

- https://github.com/eic/epic/tree/New_B0ECAL_geo
- ECAL Crystal matrix and position (692 712 cm from IP)
	- BO ECAL customized matrix (close to CAD drawing)
	- Small fixes related to the coordinate system

Simulation status – B0 geometry (pending update)

- https://github.com/eic/epic/tree/New_B0ECAL_geo
- ECAL Tracker layers are adjusted accordingly
	- \circ B0 tracker: $z=6.3$ m, length $27*3$ cm = 81 cm
	- \circ z=6.39m, length 34*3 cm = 102 cm
		- \blacksquare 1st tracker layer = 588 cm
		- \blacksquare 2nd tracker layer = 622 cm
		- \blacksquare 3rd tracker layer = 656 cm
		- \blacksquare 4th tracker layer = 690 cm

4th layer is 2cm from EMCAL

Acceptance in B0 X-Y plane

- Photon gun with E<110GeV and 5<θ/mrad<25
- Spatial photon acceptance defined as:

 $N(E_{BOECAL} > E_{threshold})/N$

Set energy threshold in $EMCAL > 100$ MeV

Observations

- Photon out-of-fiducial region deposit energy in EMCAL
- Caused by photon conversion in earlier detector's material

Acceptance in B0 X-Y plane

- Photon gun with E<110GeV and 5<θ/mrad<25
- Spatial photon acceptance defined as:

 $N(E_{BOECAL} > E_{threshold})/N$

Set energy threshold in EMCAL > 2 GeV

Observations

- Photon out-of-fiducial region deposit energy in EMCAL
- Caused by photon conversion in earlier detector's material

Acceptance in B0 X-Y plane

G4 simulation provides information of the photon endpoint (photon conversion), issue with the central beam pipe persist

electron beam

Acceptance in B0 X-Y plane

- Photon gun with E<110GeV and 5<θ/mrad<25
- Spatial photon acceptance defined as:

 $N(E_{BOECAL} > E_{threshold})/N$

Set energy threshold in EMCAL > 0.5 E_{GEN}

Observations

High acceptance for photons that not intersect the central beampipe

Energy response for θ<13mrad

- To study the entire detector's sensitive area, consider only photons interacting within the B0ECAL crystals
- NOTE: light yields are not included in the reconstruction

Energy response for θ<13mrad

- To study the entire detector's sensitive area, consider only photons interacting within the B0ECAL crystals
- Clustering algorithm shows saturation (**FIXME**)

Energy response for θ<13mrad

For each 2x2 cm² crystal we use 3+1 sensors of different pitch size

- Realistic energy response is given by the following sequence: N photons in PbOW crystal / $mm^2 = 145.75$ / GeV $[1]^*$
	- 1. Sample N photons from $Poi(N_{SipM}=145.75*400)$, randomly distribute among the four sensors, with 6x6mm²SiPM: n~Binomial(N*PDE,0.09) (the largest effect on the resolution)
	- 2. Apply PDE of 18% for 10PS, 32% for 15PS, and saturation: ADC = $N_{MAX}(1-EXP(-n^*)de/N_{MAX}))$, $N_{MAX}=(6/PS)^2$ $E_{MAX}(15PS) = N_{MAX}/(145.75*36*0.32) = 95 GeV$ **EMAX(10PS) = NMAX/(145.75*36*0.18) = 170 GeV**
	- 1. Apply calibration factor ADC \rightarrow GeV

 $C_10PS = ADC * (1 / 145.75 * 36 * 0.18)$

*** Expected reflectivity 99% (93% in LY) * Expected LY 200ph/MeV**

[1] 100% reflectivity, 100ph/MeV, https://indico.bnl.gov/event/24129/contributions/93860/attachments/55755/95323/VZhezher_20240709.pdf

Energy response for θ<13mrad

For each 2x2 cm² crystal we use 3+1 sensors of different pitch size

- Realistic energy response is given by the following sequence: N photons in PbOW crystal / $mm^2 = 145.75$ / GeV [1]
	- 1. Sample N photons from $Poi(N_{SipM}=145.75*400)$, randomly distribute among the four sensors, with 6x6mm²SiPM: n~Binomial(N*PDE,0.09) (the largest effect on the resolution)
	- 2. Apply PDE of 18% for 10PS, 32% for 15PS, and saturation: ADC = $N_{MAX}(1-EXP(-n^*)de/N_{MAX}))$, $N_{MAX}=(6/PS)^2$ $E_{MAX}(15PS) = N_{MAX}/(145.75*36*0.32) = 95$ GeV **EMAX(10PS) = NMAX/(145.75*36*0.18) = 170 GeV**
	- 1. Apply calibration factor ADC \rightarrow GeV

 $C_10PS = ADC * (1 / 145.75*36*0.18)$

Energy response for θ<13mrad

For each 2x2 cm² crystal we use 3+1 sensors of different pitch size

- Realistic energy response is given by the following sequence: N photons in PbOW crystal / $mm^2 = 145.75$ / GeV [1]
	- 1. Sample N photons from $Poi(N_{SipM}=145.75*400)$, randomly distribute among the four sensors, with 6x6mm²SiPM: n~Binomial(N*PDE,0.09) (the largest effect on the resolution)
	- 2. Apply PDE of 18% for 10PS, 32% for 15PS, and saturation: ADC = $N_{MAX}(1-EXP(-n^*)de/N_{MAX}))$, $N_{MAX}=(6/PS)^2$ $E_{MAX}(15PS) = N_{MAX}/(145.75*36*0.32) = 95 GeV$ **EMAX(10PS) = NMAX/(145.75*36*0.18) = 170 GeV**
	- 1. Apply calibration factor ADC \rightarrow GeV

 $C_10PS = ADC * (1 / 145.75 * 36 * 0.18)$

Energy response for θ<13mrad

For each 2x2 cm² crystal we use 3+1 sensors of different pitch size

Non gaussian shape

Acceptance in ZDC X-Y plane

- Photon gun with E<110GeV and θ<5mrad
- Spatial photon acceptance defined as:

 $N(E_{BOECAl}>E_{threshold})/N$

Set energy threshold in ZDC > 100 MeV

Observations

• All detected photons contained within the hadron beampipe inside the B0 magnet

Acceptance in ZDC X-Y plane

- Photon gun with E<110GeV and θ<5mrad
- Spatial photon acceptance defined as:

 $N(E_{BOECAL} > E_{threshold})/N$

Set energy threshold in $ZDC > 2$ GeV

Observations

- All detected photons contained within the hadron beampipe inside the B0 magnet
- Small overlap with RP boxes

Hadron beampipe in B0

Acceptance in ZDC X-Y plane

G4 simulation provides information of the photon endpoint (photon conversion), photons blocked by B0 beampipe

Energy response in ZDC:

- ECAL layer has low containment for large energy range
- Same issue as B0? (energy truncation)

Acceptance in ZDC X-Y plane

- Photon gun with E<110GeV and θ<5mrad
- Spatial photon acceptance defined as:

 $N(E_{BOECAL} > E_{threshold})/N$

Set energy threshold in ZDC > 0.5 E_{GEN}

Observations

- All detected photons contained within the hadron beampipe inside the B0 magnet
- Small overlap with RP boxes
- Energy containment (7cm LYSO?)

Hadron beampipe in B0

Photon detection

Joint acceptance in B0+ZDC

- Photon gun with E<110GeV and θ<25mrad
- Photon acceptance defined as:

 $N(E_{CAI} > E_{threshold})/N$

Set energy threshold in the calorimeters > 0.5 E_{GEN}

Observations

- In overall a good coverage of the forward region
- Some loss in acceptance around hadron beampipe in B0 detector **Hadron beampipe in B0**

B0ECAL performance - neutrons

Acceptance in B0 X-Y plane

- Neutron gun with E<100GeV and 5<θ/mrad<25
- Spatial photon acceptance defined as:

 $N(E_{BOECAL} > E_{threshold})/N$

Set energy threshold in B0EMCAL > 100 MeV

Observations

● Neutrons out-of-fiducial region deposit energy in the EMCAL, specially from the electron beampipe

B0ECAL performance - neutrons

Acceptance in B0 X-Y plane

- Neutron gun with E<100GeV and 5<θ/mrad<25
- Spatial photon acceptance defined as:

 $N(E_{\text{ROECAl}}) = E_{\text{threshold}}/N$

Set energy threshold in B0EMCAL > 2 GeV

Observations

- Neutrons out-of-fiducial region deposit energy in the EMCAL, specially from the electron beampipe
- Overlap with central beampipe is also visible

B0ECAL performance - neutrons

Energy response for θ<13mrad

- To study the entire detector's sensitive area, consider only neutrons interacting within the B0ECAL crystals (40%)
- NOTE: light yields are not included in the reconstruction

ZDC performance - neutrons

Acceptance in ZDC X-Y plane

- Neutron gun with E=110GeV and θ<5mrad
- Spatial photon acceptance defined as:

 $N(E_{ZDC} > E_{threshold})/N$

Set energy threshold in ZDC > 0.25 E_{GEN}

Observations

- All detected photons contained within the hadron beampipe inside the B0 magnet
- Small overlap with RP boxes

Hadron beampipe in B0

Neutron detection

Joint acceptance in B0+ZDC

- Photon gun with E=110GeV and θ<25mrad
- Photon acceptance defined as:

 $N(E_{CAI} > E_{threshold})/N$

Set energy threshold in the calorimeters > 2GeV

Observations

- In overall a good coverage of the forward region
- Energy reconstructed in B0 is limited (use loose threshold)
- Some neutron tagging can be done in B0 detector (*no E reco) Hadron beampipe in B0

26

B0Tracker performance - protons

Track reconstruction

- 110 GeV protons generated with $5 < \theta/mrad < 25$.
- Overlap with central beampipe causes large losses in the acceptance

Sp. $(1, 4)$

Generated proton θ _x [mrad]

ZDC?

endpoint [m]

RP+OMD performance - protons

Track reconstruction in the forward tracker

- 275 GeV protons generated with θ < 5 mrad
- Acceptance: N(reco track)/N

RP+OMD performance - protons

Track reconstruction in the forward tracker

- \bullet 275 GeV protons generated with θ < 5 mrad
- Acceptance: N(reco track)/N
- Test both OMD/RP

RP+OMD performance - protons

Joint acceptance in B0+RP

- Proton gun with E=275 GeV and θ<25mrad
- Photon acceptance defined as:

 $N(N_{TRK} > 0)/N$

Observations

- B0 tracking acceptance starts at $θ$ ~8 mrad
- The coverage of the forward region expected to be good
- **PT** reconstructed works for both subsystems

Summary

Summary

- BOECAL geometry is fully configurable and is ready to be merged with the main branch
- The interplay with all Far-Forward detectors was studied (can be added to pre-TDR plots)

Results for B0 detectors

- Some overlap with the central beampipe FIXME
- Clustering algorithm for Crystals show saturation, need to be fixed (EICRECON)

Photons: good acceptance down to low energy thresholds, impact on the resolution from the light

yields only effects low energy region (up to a few GeV)

Charged particles (protons): improved resolution with increased space between the layers **Neutrons**: 50% detection efficiency, with challenging tagging (Pulse/Cluster shapes?)

Backup

Technical info

Branches used in the analysis:

MCParticles: Particle gun - generator information

B0ECalHits: B0 EMCAL hits

B0ECalClusters: B0 ECAL Clusters (EICRECON)

ReconstructedChargedParticles: Charged particles. After rotation particles with eta>4

are assigned to B0 tracker

ForwardOffMRecParticles: OMD tracks

ForwardRomanPotRecParticles: RP tracks

EcalFarForwardZDCClusters: ZDC ECAL

HcalFarForwardZDCClusters: ZDC HCAL

Simulation status – B0 geometry

• Default geometry (master branch on Aug 19):

Hadron magnets -- with BIG FLIP and 50cm shift

34

 32 33 \mathcal{L}

 14.14

Simulation status – B0 geometry

● Matching CAD drawing

Photon detection

Joint acceptance in B0+ZDC

- Photon gun with E<110GeV and θ<25mrad
- Photon acceptance defined as:

 $N(E_{BOECAl}>E_{threshold})/N$

Set energy threshold in EMCAL > 0.5 E_{GEN}

Observations

- In overall a good coverage of forward region
- Some loss in acceptance around hadron beampipe in B0 detector

Energy response for θ<13mrad

For each 2x2 cm² crystal we use 3+1 sensors of different pitch size

- Realistic energy response is given by the following sequence: N photons in PbOW crystal / $mm^2 = 145.75$ / GeV [1]
	- 1. Sample N photons from $Poi(N_{SipM}=145.75*400)$, randomly distribute among the four sensors, with 6x6mm²SiPM: n~Binomial(N*PDE,0.09) (the largest effect on the resolution)
	- 2. Apply PDE of 18% for 10PS, 32% for 15PS, and saturation: $ADC = N_{MAX}(1-EXP(-n^*pde/N_{MAX}))$, $N_{MAX}=(6/PS)^2$ $E_{MAX}(15PS) = N_{MAX}/(145.75*36*0.32) = 95$ GeV **EMAX(10PS) = NMAX/(145.75*36*0.18) = 170 GeV**
	- 1. Apply calibration factor ADC \rightarrow GeV

 $C_10PS = ADC * (1 / 145.75 * 36 * 0.18)$

number of photons / sensor = 944.46

Energy response for θ<13mrad

For each 2x2 cm² crystal we use 3+1 sensors of different pitch size

- Realistic energy response is given by the following sequence: N photons in PbOW crystal / $mm^2 = 145.75$ / GeV [1]
	- 1. Sample N photons from $Poi(N_{SipM}=145.75*400)$, randomly distribute among the four sensors, with 6x6mm²SiPM: n~Binomial(N*PDE,0.09) (the largest effect on the resolution)
	- 2. Apply PDE of 18% for 10PS, 32% for 15PS, and saturation: $ADC = N_{MAX}(1-EXP(-n^*pde/N_{MAX}))$, $N_{MAX}=(6/PS)^2$ $E_{MAX}(15PS) = N_{MAX}/(145.75*36*0.32) = 95 GeV$ **EMAX(10PS) = NMAX/(145.75*36*0.18) = 170 GeV**
	- 1. Apply calibration factor $ADC \rightarrow GeV$

 $C_10PS = ADC * (1 / 145.75*36*0.18)$

B0Tracker performance - protons

Momentum resolution

- \bullet 110 GeV protons generated with $5 < \theta/m$ rad < 25 .
- Overlap with central beampipe causes large losses in acceptance

Acceptance in B0 X-Y plane

Spatial photon acceptance tested with particle gun, and defined as:

 $N(E_{BOECAL} > E_{threshold})/N$

Set energy threshold in $EMCAL > 100$ MeV

Observations

- Photon out-of-fiducial region deposit energy in EMCAL
- Caused by photon conversion in earlier detector's material

Acceptance in B0 X-Y plane

Spatial photon acceptance tested with particle gun, and defined as:

 $N(E_{BOECAL} > E_{threshold})/N$

Set energy threshold in $EMCAL > 2 GeV$

Observations

- Photon out-of-fiducial region deposit energy in EMCAL
- Caused by photon conversion in earlier detector's material

Acceptance in B0 X-Y plane

G4 simulation provides information of the photon endpoint (photon conversion), issue with the central beampipe persist

electron beam