Exclusive, Diffraction, & Tagging Meeting VM production in eA (preTDR material)

30 September 2024

Zvi Citron¹, Eden Mautner¹, Kong Tu³, <u>Michael Pitt</u>^{1,2} ¹Ben Gurion University of the Negev (Israel) ²The University of Kansas (USA) ³Brookhaven National Lab. (USA)

Motivation

- One of the three central questions highlighted in the NAS report on the
 - EIC: gluon imaging and the onset of gluon saturation
 - Via exclusive and diffractive vector meson electroproduction
 - \succ Electron exchanges a virtual photon which fluctuaties into $q\bar{q}$ dipole

Figure 1: The coherent (left) and incoherent (right) exclusive vector meson 30 September 202 production in *e*A collisions.

Motivation

- Coherent cross-section is higher than the incoherent (low t)
- Lighter mesons have higher cross-section, but too low mass enters non

	$\phi \to K^+ K^-$	$J/\psi \to \mu\mu$
coherent	59.55 nb	4.95 nb
incoherent	2.35 nb	0.44 nb

Table 1: Production cross-section time the branching ratio of vector mesons in coherent and incoherent interactions. Events were generated for $1 < Q^2/\text{GeV}^2 < 10$.

Diffractive dips \rightarrow **Gluon distribution** Main challenge it to measure these dips

3

30 September 2024

Challenges

Reconstruction of momentum transfer shows that the dips flushed away

due to detector effects (plots obtained using July/August 2024 campaign)

Analysis

Coherent event Selection

- Show J/psi selection (phi is ongoing)
- 3 track events (in Barrel)
- VM mass window of 0.4 GeV (no PID)
- Veto activity in forward region:

B0 tracks, B0 clusters, Tracks in OMD and

ZDC Clusters

Signal efficiency for different processes:

Cut	$J/\psi ightarrow ee$	$J/\psi o \mu \mu$	$\phi \to KK$
3 tracks	0.973705	0.97383	ongoing
VM mass cut	0.838785	0.898815	ongoing
Veto FF Detectors	0.838745	0.898795	ongoing

30 September 2024

Incoherent rejection

Background composition

Incoherent events characterized with ion breakup, and background

rejection strategy rely on efficient tagging of forward particles

	Before selection $(\%)$	After selection (%)
only photons	7.76754	95.7573
only protons	0	0
only neutrons	11.0551	0.0456204
photons and neutrons	53.3752	0.273723
protons and neutrons	1.34407	3.83212
protons and photons	2.30462	0
photons, neutrons and protons	24.1514	0.0456204

Table 2: Event composition in incoherent J/ψ production before and after full event selection

Incoherent rejection

Background composition

Incoherent events characterized with ion breakup, and background

rejection strategy rely on efficient tagging of forward particles

e $\phi, J/\psi, \dots$ A $A' + \lambda$

30 September 2024

Incoherent rejection

Coherent event Selection

Background rejection strategy – veto using signals from Far-forward detectors

Background efficiency based on ePIC FFD simulation	Cut	J/ψ (%)	φ(%)
	3 tracks	0.914885	ongoing
	VM mass cut	0.827045	ongoing
	Veto B0	0.429656	ongoing
	Veto OMD/RP	0.29286	Ongoing
	Veto ZDC	0.013776	ongoing

TABLE IV. Cuftlow for background processes for diffractive J/ψ production

Summary and discussion

Coherent VM production - status

- Simulation of FF region:
 - Simulation performed with recent ePIC geometry + small updates with B0 (<u>PR788</u>)
 - Production looks good for both coherent and incoherent events
- Coherent VM selection and background veto all plots ready for pre-TDR
- Check simulation with Au instead of Pb (to compare with Sartre)
- Add signal/background samples for central production (Oct. campaign)

Going beyond pre-TDR (for BGU group)

Coherent VM:

• Include low-Q taggers (double statistics) + t reconstruction

Quasi-coherent VM:

 Following the completion of the GEN level study (documentation in preparation), we plan to test this channel with the ePIC simulation

Coherent production

Signal simulation

eStarlight: https://github.com/michael-pitt/estarlight/tree/FixIonPDG

- W_MAX = -1 #Max value of w from HERA
- W_MIN = -1 #Min value of w from HERA
- W_N_BINS = 50 #Bins i w
- W_GP_MAX = -1 #Max value of W_gp
- W_GP_MIN = -1 #Min value of W_gp
- $EGA_N_BINS = 400$
- CUT_PT = 0 #Cut in pT? 0 = (no, 1 = yes)
- CUT_ETA = 0 # Cut in Eta on VM decay products

PROD_MODE = 12 #narrow / wide switch (12 = coherent vector meson (narrow), 13 = coherent vector meson (wide)) N EVENTS = 4000

```
PROD_PID = 443011 # 443011 - Jpsi->ee , 443013 - Jpsi->mumu, 333 – phi->KK
```

PYTHIA_FULL_EVENTRECORD = 1 # Write full pythia information to output (vertex, parents, daughter etc).

- QUANTUM_GLAUBER = 1 # Do a quantum Glauber calculation instead of a classical one
- $MIN_GAMMA_Q2 = 1.0$
- $MAX_GAMMA_Q2 = 10.0$
- SELECT_IMPULSE_VM = 0 # Impulse VM parameter

Execution time:

No ions in the record: 2.01 s/Event Standard: 16.23 s/Event

Incoherent production

Background simulation

BeAGLE V1.03.02 (https://eic.github.io/software/beagle.html)

PROJPAR					ELEC	FRON
TARPAR	208.	0 82	.0			
TAUFOR	10.0) 25	.0 1.0)		
FERMI	2	0.62	1	0		
*	yMin	yMax	Q2Min	Q2Max	theta	
L-TAG	0.01	0.95	1	10.0	0.0	6.29
* model selection (0=all, 1=rho,2=omega,3=phi,4=J/psi) PYVECTORS 4						
USERSET	15	9.	.0			
MODEL					PYTH	IA
* if PYTHIA model specify pythia input cards						
PY-INPUT	Г				S3VJL	.003

Coherent and incoherent production

Afterburner configuration

Using eic-shell and abconv -p 2 (https://github.com/eic/afterburner)

A ab afterburner is used 1 A ab_crossing_angle 0.025 A ab_hadron_beta_crab_hor 500000 A ab_hadron_beta_star_hor 910 A ab_hadron_beta_star_ver 40 A ab_hadron_divergence_hor 0.000218 A ab_hadron_divergence_ver 0.000379 A ab_hadron_rms_bunch_length 70 A ab_hadron_rms_emittance_hor 4.32e-05 A ab_hadron_rms_emittance_ver 5.8e-06 A ab_lepton_beta_crab_hor 150000 A ab_lepton_beta_star_hor 1960 A ab_lepton_beta_star_ver 410 A ab_lepton_divergence_hor 0.000101 A ab_lepton_divergence_ver 3.7e-05 A ab lepton rms bunch length 9 A ab_lepton_rms_emittance_hor 2e-05 A ab_lepton_rms_emittance_ver 6e-07 A ab_use_beam_bunch_sim 1

Coherent and incoherent production

Afterburner configuration

Compare vtx distribution stored in hepmc files used in the simulation before and after the afterburner

Vertex coordinates (x,y,z,t?) obtained from "E" line in the hepmc files (in mm)

Coherent and incoherent production

Afterburner configuration

Compare outgoing electron distribution before and after the afterburner

The Far-Forward detectors

