

DVCS ep Update

O. Jevons, University of Glasgow

ePIC Exclusive, Diffractive and Tagging WG meeting 30/09/24

DVCS in ep collisions

- Looking at $e(k)p(p) \rightarrow e'(k')p'(p')\gamma$ process to probe Generalized Parton Distributions (GPDs).
- (Some) Important variables:
 - Photon 4-momentum transfer, $Q^2 = -q^2 = -(k k')^2$
 - $t = (p' p)^2$
 - Fractional parton momentum, x
 - Bjorken-x, $x_B = Q^2/2qp$
- Using EpIC generator files, passed through the ePIC detector geometry in monthly simulation campaigns.

Using DVCS to test ePIC

- DVCS is a good channel to test many of the ePIC subsystems.
- The scattered electron and photon are detected in the central barrel.
 - Can test PID and energy/momentum resolutions in the barrel and endcaps.
- Scattered proton gets picked up in the far forward region.
 - B0 for 5x41 and 10x100.
 - Roman Pots for 10x100 and 18x275.

Changes since last update

- Changed default particle selection procedure.
 - Still have ePIC PID selection if desired, although this does not work for protons in the B0.
 - For protons, select on track charge and energy (80-120 GeV).
 - All RP tracks are assumed to be protons.
- For now, using charge of track to select e', p' (in B0), γ.
 - Proton: +1
 - Electron: -1
 - Photon: 0
- Move to using most recent DVCS campaign (24.08.1).
 - No DVCS yet run in 24.09.0.

Generator coverage (10x100, 24.08.1)

Cuts applied

- Cuts only applied if distribution cares about particles of interest (ie. no need to require full exclusivity for Q² distribution).
- Cuts used:

Single particle

- Exactly 1 e', p', γ
- Momentum of e', p' no more than 10% above beam momentum
- Proton track angle cut: [5.5, 20]mrad for B0; [0, 5.5]mrad for Roman Pots

Event

- $Q^2 \ge 1 \text{ GeV}^2$
- * $t \le 0.3 \text{ GeV}^2$ for protons in the RP
- Full final state $MM^2 \le 1 \text{ GeV}^2$
- Cut on tail of reconstructed x_B distribution based on tail of MC generated distribution

TDR plots: η distribution

TDR plots: t distribution

8

TDR plots: γ angular performance

9

TDR plots: $\Delta \theta_{v}$ (zoom in)

Other things: 24.08.1, 5x41 GeV

- Roman Pot occupancy for 5x41 beam energy.
- Perhaps wrong magnet settings used?

Issues/Next steps

- Think that 24.08.1 5x41 run using wrong magnet settings.
- (Long-term) Need to convert analysis code to using RDataFrames (currently based on TTreeReader).
- Any more requests for TDR/physics plots?
- (Especially looking forwards to early physics workshop) Need to turn current analysis into projections of final observables.

