

Incoherent Events with BeAGLE

Mathias Labonté

Exclusive diffractive and tagging meeting December 2, 2024

Outline

- 1. Motivation and Good-Walker paradigm
- 2. Details BeAGLE dataset
- 3. Incoherent event tagging efficiency study
 How well can we tag incoherent events at ePIC?
- 4. Comparisons between Pb and Au

Good-Walker paradigm

- Coherent exclusive vector meson production events are sensitive to the transverse gluon distribution within the nucleus
- Incoherent events are sensitive to event-by-event fluctuations
- Even nuclear excitations are incoherent, and the Good-Walker paradigm breaks down
- Measuring these photons coming from nuclear de-excitations can serve as a means of tagging incoherent events

Event Generation

• Use BeAGLe to generate $\sim 20~000$ events with J/Ψ production

e+Pb 18x110 GeV

e+Au 18x110 GeV

- Force the nucleus to remain intact (ARemn = 208, 197)
- Select only photons whose parent ID is a nucleus
- Is there a target species that is preferred for VM production?

Excitation energy

- We can then plot the excitation energy against the total energy of diffractive photons in the event
- Very well correlated
- Can conclude we are properly selecting photons coming from nuclear excitations

Number of photons in each event

 We see Pb typically emits 1 photon, Au around 5 or 6

Number of photons in each event

- We see Pb typically emits 1 photon, Au around 5 or 6
- How does this plot behave as a function of t?

Number of photons in each event

 As t increases, the collision becomes more violent and we produce more photons

How well can we tag incoherent events?

How many of photons do we see in ZDC?

- Select on the plane Z = 35 m
- Select photon with highest η in each event
- Plot the X-Y distribution of the photons
- Effective area of ZDC: 17x17 cm
- Can tag around 40% of events as incoherent in fiducial region of ZDC

How many photons do we see in B0?

- We catch around half of the photons in the B0 at the z = 6.8 m plane
- Inner radius: 40 mm
- Outer Radius 150 mm
- Have not accounted for irregular geometry
- We see around a 50% incoherent event tagging efficiency in the B0

Accounting for minimum energy threshold

- The ZDC and B0 will be able to see photons with energies (roughly) greater than 100 MeV
- Select photon with the highest η whose energy in the lab frame is greater than 100 MeV

What about with gold?

- Gold has some excited states that are very long lived
- 77 KeV \rightarrow 1.91 ns
- $409 \text{ KeV} \rightarrow 7.73 \text{ s}$
- The nucleus will travel far down the beampipe before it emits these photons
- If we want to make a similar plot, we should first cut them out

	Excited Nuclear States for Au-1		
Energy levels			
$2J^{\pi}$	μ	Q	$T_{1/2}$ or
			$\Gamma_{ m cm}$
2+	±1 145746(0)	±0.547(16)	Stable
1+	+0.420(3)	. ,	1.91(1) ns
3 ' 5+	⊥0.53(5)		15.4(13) ps 18.6(15) ps
11-	(+)5.98(9)	+1.68(5)	7.73(6) s
5+	+3.0(5)	+3.0(5)	1.77(+19-12) p
•	+0.53(7)		4.61(+19-13) p
, ,	1.7(5)	1.7(5)	1.09(+13-9) p
	+1.7(5)	+1.7(5)	1.09(+13-9) p
9+	+1.5(5)	+1.5(6)	2.67(+25-15) p
	,	, ,	, , ,
1+			
$\langle 5^+ \rangle$			
$\langle 9^- \rangle$			
$\langle 13^{-} \rangle$			
$\langle 7^+ \rangle$			
$\langle 9^+ \rangle$			
$3^{+},5^{+}$			
$\langle 3^+ \rangle$			
11^{+}	+2.0(10)		0.91(1) ps
	3^{+} 1^{+} 3^{+} 5^{+} 7^{+} $\langle 7^{-} \rangle$ 7^{+} $\langle 15^{-} \rangle$ 9^{+} 1^{+} $\langle 5^{+} \rangle$ $\langle 9^{-} \rangle$ $\langle 13^{-} \rangle$ $\langle 7^{+} \rangle$ $\langle 9^{+} \rangle$ $3^{+},5^{+}$ $\langle 3^{+} \rangle$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

What about with gold?

UNIVERSITY OF CALIFORNIA

14

- Gold has some excited states that are very long lived
- 77 KeV \rightarrow 1.91 ns
- $409 \text{ KeV} \rightarrow 7.73 \text{ s}$
- The nucleus will travel far down the beampipe before it emits these photons
- If we want to make a similar plot, we should first cut them out
- For 409 KeV peak, have not accounted for decays to higher energy levels

(In target rest frame)

How many of photons do we see in ZDC?

Efficiency = # of events with photon in ZDC acceptance

of total events

***WITH minimum energy requirement $E_{\gamma} > 100~{
m MeV}$

How many photons do we see in B0?

of events with photon in B0 acceptance

***WITH minimum energy requirement $E_{\gamma} > 100~{
m MeV}$

Conclusion

- It is critical to tag incoherent events when studying vector meson production
- We can tag incoherent events with the ZDC with a ~38% efficiency
- We can tag incoherent events with the B0 with a ~34% efficiency
- Au spectrum has some longer lived states that wont decay within ePIC acceptance
- Regardless, the tagging efficiencies are roughly the same between the two species