

INTT cluster distributions in Au+Au Run2023

Hao-Ren Jheng

Overview

- \blacksquare While working on dN_{ch}/dη analysis, various checks on the reconstructed cluster in Run2023 Au+Au data and simulation show interesting yet puzzling results
- Data and simulation samples used for the comparison
 - □ Data: Run 20869, DST produced with hot/dead/bad channel maps, BCO difference mask, and the survey geometry
 - Location: /sphenix/user/hjheng/sPHENIXRepo/analysis/dNdEta_Run2023/production/ProdDST-HotDead-BCO-ADC-Survey/Data_CombinedNtuple_Run20869_HotDead_BCO_ADC_Survey.root
 - □ Simulation: HIJING, software build ana.419, DST produced with bad channel maps, ADC conversion map, and the survey geometry
 - Location: /sphenix/tg/tg01/bulk/dNdeta_INTT_run2023/data/simulation/ana.419/HIJING/ fullSim/magOff/detectorMisaligned/dstSet_00001/dNdeta-sim-HIJING-000-00*.root

Updated vertex position in simulation SPHENEX

Simulation (HIJING) with updated vertex Z position

□ **Old**: initial measurement from last year; mean -19.8 cm, width 5.20 cm

□ New/Current simulation: updated measurement; mean -20.7 cm, width 6.49 cm Old

New/Current

3

Cluster distributions - ϕ and η

$\blacksquare \phi$ and η are calculated with respect to the event vertex

Cluster distributions - ADC & \$\phi\$ size

<u>Strong correlation between the cluster ADC and ϕ -size</u>

5

Cluster n v.s Cluster ADC

Without cluster ADC > 35 cut (to highlight where the clusters with ADC < 35 are)</p>

Data

Hao-Ren Jheng

SPHE

Cluster n v.s Cluster ADC/ psize

Without cluster ADC > 35 cut (to stress where the clusters with ADC < 35 are)</p>

Data

Cluster n v.s Cluster ADC/ p size

■ With cluster ADC > 35 cut

Data

SPHE

Cluster n v.s Cluster ADC/cluster of size

■ If those clusters are removed from data...

Comparison

With MVTX support v.s Without

Effect of MVTX material budget, especially the support structure?

Cluster ADC to ϕ size ratio

Y-axis: weighted average of the ratio of cluster ADC and ϕ size (the average ADC value per strip in a cluster) as a function of cluster n

Questions:

- What cause the difference between data and simulation?
- \Box What does it look like in Run2024 p+p data and simulation?

11

Cluster ADC to ϕ size ratio

Vertex Z position dependence?

Data

Hao-Ren Jheng

Summary

- Discrepancies between data and simulation in Run2023 Au+Au
- Non-collision clusters with unknown sources
 - \Box Low cluster ADC at η ~2: removed by the constant ADC cut > 35
 - \Box Cluster ADC/ φ size = [79,82] and [111,114] also at η ~2: a simple cut to remove these seems excessive
- The average ADC value per strip in a cluster is much lower in data than in simulation
- Run2024 p+p data and simulation?

Backup

Unrolled hitmap

Simulation

Hao-Ren Jheng

SPHENIX

Data

*Using Michael's code to calculate the unrolled indices

d indices

Unrolled hitmap

Simulation

Hao-Ren Jheng

SPHENIX

Data

*Using Michael's code to calculate the unrolled indices

Cluster distributions - # of clusters

Number of clusters in data

Cluster & distribution in data

Cluster distributions

SPHE

Cluster & size v.s ADC in data

SPHE

21

Cluster ϕ size v.s ADC in simulation

SPHEN

n-dependent cluster ADC cut

\blacksquare The initial set of θ -dependent cluster ADC proposed by the INTT team was applied to both data and simulation

\Box Unnatural discontinuity in the cluster η distributions in both data and simulation

n-dependent cluster ADC cut

ADC cut with hyperbolic function with different parameters

Hao-Ren Jheng

Zvertex reweight

SPHE

