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I. INTRODUCTION

The phenomenon of di�raction is familiar to us from
many areas of physics and is generally understood to arise
from the constructive or destructive interference of waves.
One such example, a plane wave impinging on a single
slit is shown in Fig. 1. In the strong interactions, di�rac-
tive events have long been interpreted as resulting from
scattering of sub-atomic wave packets via the exchange of
an object called the Pomeron (named after the Russian
physicist Isaac Pomeranchuk) that carries the quantum
numbers of the vacuum. Indeed, much of the strong in-
teraction phenomena of multi-particle production can be
interpreted in terms of these Pomeron exchanges.

FIG. 1:

In the modern strong interaction theory of Quan-
tum ChromoDynamics (QCD), the simplest model of
Pomeron exchange is that of a colorless combination
of two gluons, each of which individually carries color
charge. In general, di�ractive events probe the com-
plex structure of the QCD vacuum that contains color-
less gluon and quark condensates. Because the QCD vac-
uum is non–perturbative and because much of previously
studied strong interaction phenomenology dealt with soft
processes, a quantitative understanding of di�raction in
QCD remains elusive.

Significant progress can be achieved throught the study
of hard di�ractive events at collider energies. These al-
low one to study hadron final states with invariant masses
much larger that the fundamental QCD momentum scale
of � 200 MeV. By the uncertainity principle of quantum
mechanics, these events therefore provide considerable
insight into the short distance structure of the QCD vac-
uum.

A QCD diagram of a di�ractive event is shown in
Fig. 2. It can be visualized in the proton rest frame as
the electron emitting a photon with virtuality Q2 and
energy �, that subsequently splits into a quark–anti-
quark+gluon dipole; other wave packet dipole configura-
tions are also feasible. These dipoles interact coherently
with the hadron target via a colorless exchange. The
figure depicts this as a colorless gluon ladder, which as
discussed previously, is a simple model of Pomeron ex-
change.

Because the spread in rapidity between the dipole and
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QCD in the limit of the large number of colors Nc.2 Generalization of Eq. (1.3) beyond the
large-Nc limit is accomplished by the Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–
Kovner (JIMWLK) [62, 64, 65, 68, 69] evolution equation, which is a functional differential
equation.

The physical impact of the quadratic term on the right of Eq. (1.3) is clear: it slows down
the small-x evolution, leading to parton saturation, when the number density of partons
stops growing with decreasing x. The corresponding total cross sections satisfy the black
disk limit of Eq. (1.2). The effect of gluon mergers becomes important when the quadratic
term in Eq. (1.3) becomes comparable to the linear term on the right-hand-side. This gives
rise to the saturation scale Qs, which grows as Q2

s ∼ (1/x)λ with decreasing x [55, 61,96].

1.1.2 Classical Gluon Fields and the Nuclear “Oomph” Factor

We have argued above that parton saturation is a universal phenomenon, valid both for
scattering on a proton or a nucleus. Here we demonstrate that nuclei provide an extra
enhancement of the saturation phenomenon, making it easier to observe and study experi-
mentally.

Imagine a large nucleus (a heavy ion), which was boosted to some ultrarelativistic ve-
locity, as shown in Fig. 1.4. We are interested in the dynamics of small-x gluons in the
wave function of this relativistic nucleus. One can show that due to the Heisenberg un-
certainly principle the small-x gluons interact with the whole nucleus coherently in the
longitudinal (beam) direction: therefore, only the transverse plane distribution of nucleons

Boost

Figure 1.4: Large nucleus before and after an ultrarelativistic boost.

is important for the small-x wave function. As one can see from Fig. 1.4, after the boost,
the nucleons, as “seen” by the small-x gluons with large longitudinal wavelength, appear
to overlap with each other in the transverse plane, leading to high parton density. Large
occupation number of color charges (partons) leads to classical gluon field dominating the
small-x wave function of the nucleus. This is the essence of the McLerran-Venugopalan
(MV) model [94]. According to the MV model, the dominant gluon field is given by the
solution of the classical Yang-Mills equations, which are the QCD analogue of Maxwell
equations of electrodynamics.

2An equation of this type was originally suggested by Gribov, Levin and Ryskin in [55] and by Mueller
and Qiu in [97], though at the time it was assumed that the quadratic term was only the first non-linear
correction with higher order terms expected to be present as well: in [28,78] the exact form of the equation
was found, and it was shown that in the large-Nc limit Eq. (1.3) does not have any higher-order terms in N .
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π0-π0 forward correlation in pp and dA at RHIC

Striking broadening of away side 
peak in central pA and dA 

compared to pp and peripheral 
dA!

beam-view: Φ

PHENIX, Phys.Rev.Lett. 107 (2011), 172301
 STAR, Phys.Rev.Lett. 129 (2022) 9, 092501
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1 question, 2 answers
Color Glass Condensate with JIMWLK evolution:  

Perturbative gluon recombinations

Leading Twist Shadowing: 
Suppression in Nuclear PDF + multiple scattering + perturbative DGLAP evolution
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calculated with R(2)
dA containing both dynamical shadowing and cold nuclear matter energy loss effects. The dashed

curves are calculated with only dynamical shadowing. The constant offset is B = 0.01405 for central collisions and
B = 0.0066 for peripheral collisions. As we can see from the plot, our calculation gives a very good description of
the experimental data in central collisions. For peripheral collisions, the agreements get worse. The main reason for
the deviation comes from the fact that the experimental data for peripheral d+Au collisions show a clear broadening
effect in the away-side width σF [6]. However, our calculated broadening ∆⟨q2⊥⟩dAu ∝ A1/3⟨NdA

coll(b)⟩/⟨NdA
coll(bmin.bias)

becomes quite small.
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FIG. 6. Azimuthal correlation associated with back-to-back dihadron production in central (top) and peripheral (bottom)
d+Au collisions. Theoretical curves are calculated for ⟨y1⟩ = ⟨y2⟩ = 3.2 and ⟨p1⊥⟩ = 2.68 GeV and ⟨p2⊥⟩ = 1.31 GeV in d+Au
collision [36]. Data is from STAR [6].

IV. CONCLUSIONS

In summary, by taking into account both initial- and final-state multiple parton scattering inside the nucleus, we
calculated in perturbative QCD the increase in the transverse momentum imbalance (nuclear-induced broadening) of
dijet and dihadron production in high energy p+A (d+A) collisions relative to the more elementary p+p collisions.
The nuclear-induced broadening can be used to calculate the width of the away-side peak in dihadron correlation
measurements. For phenomenological applications, we combined our new theoretical findings with previously derived
coherent power correction (dynamical shadowing) and cold nuclear matter energy loss results. Perturbative QCD
calculations that take these effects into account were recently shown to give a good description of forward rapidity
single inclusive particle production in d+Au collision at RHIC. In this manuscript we provided the corresponding
evaluation for dihadron cross sections and correlations relevant to the new STAR and PHENIX measurements. With
cold nuclear matter parameters constrained by data on deep inelastic scattering on nuclei, we found that the calculated
nuclear modification factor is roughly consistent with the PHENIX experimental data. Finally, by combining the
calculated width of the away-side peak and the nuclear suppression factor, we were able to describe reasonably well
the dihadron azimuthal correlations measured by the STAR experiment. Even though we need the baseline from p+p
collisions, our formalism does describe the effects of cold nuclear matter in going from p+p to d+Au collisions pretty
well for mid-mid, mid-forward, and forward-forward correlated hadron pairs at RHIC.
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Inclusive Diffraction:  
2 very different answers!

Kowalski, Lappi, Marquet, Venugopalan, Phys. Rev. C 78, 045201, arXiv:0805.4071
Frankfurt, Guzey, Strikman Nuclei, Phys. Rept. 512 (2012) 255–393.  
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Inclusive Diffraction at small x
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ΔyX = log(1/β)
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Inclusive Diffraction at small x
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Marta Ruspa, DIS2004
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Inclusive Diffraction at small x
H1 and ZEUS Eur. Phys. J. C (2012) 72:2175
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Binning artefacts? 
??Physics??
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TO DO 1:  
Saturation in the Final State
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TO DO: Saturation in the Final State
Disappearance of the away peak in DIS:

e p e A

This effect should be even stronger in Inclusive Diffraction, 
At least 2-gluon exchange!

28

Eur.Phys.J.A 52 (2016) 9, 268



dσqq̄

d2b
(xIP, r, b) = 2 [1 − exp (−

Ω(xIP, r, b)
2 )] =

2 gluon 
exchange 4 gluon 

exchange
6 gluon 

exchange
n gluon 

exchange

At twist n, there are 2n gluons interacting with the dipole, each with transverse 
momentum  such that:q⊥,i ⃗Δ = ∑

n

ωn

2n

∑
i=1

⃗q⊥,i | ⃗Δ | = −t

29

= Ω −
Ω2

4
+

Ω3

24
− … =

∞

∑
n=1

(−1)n−1 2
n! ( Ω

2 )
n

TO DO: Saturation in the Final State

The quark goes through a random walk with  steps2n



dσqq̄

d2b
(xIP, r, b) = 2 [1 − exp (−

Ω(xIP, r, b)
2 )] =

2 gluon 
exchange 4 gluon 

exchange
6 gluon 

exchange
n gluon 

exchange

2(1 − e−Ω/2) −
T

∑
n=1

(−1)n−1 2
n! ( Ω

2 )
n

< ϵ

2e−Ω/2γN(n + 1, − Ω/2) < ϵ

 is the normalised lower incomplete gamma-function γN

γN(n + 1, − Ω/2) =
−1
n! ∫

0

−Ω/2
tne−tdt

= Ω −
Ω2

4
+

Ω3

24
− … =

∞

∑
n=1

(−1)n−1 2
n! ( Ω

2 )
n

30

Truncate expansion such that

TO DO: Saturation in the Final State



dσqq̄

d2b
(xIP, r, b) = 2 [1 − exp (−

Ω(xIP, r, b)
2 )] =

2 gluon 
exchange 4 gluon 

exchange
6 gluon 

exchange
n gluon 

exchange

2e−Ω/2γN(n + 1, − Ω/2) < ϵ

= Ω −
Ω2

4
+

Ω3

24
− … =

∞

∑
n=1

(−1)n−1 2
n! ( Ω

2 )
n

Let , with  giving the average value of:  Ω = Ω(xIP, ̂r, b̂) ̂r

qq̄ : rK0,1(ϵr)J0,1(ϵr)
dσqq̄

d2b
(xIP, r, b) qq̄g : rK2( z̃κr)Jn( 1 − z̃κr)

dσ̃qq̄

d2b
(xIP, r, b)

and .b̂ = πBG /2
31

TO DO: Saturation in the Final State

 Increase  until condition is met. n



dσqq̄

d2b
(xIP, r, b) = 2 [1 − exp (−

Ω(xIP, r, b)
2 )] =

2 gluon 
exchange 4 gluon 

exchange
6 gluon 

exchange
n gluon 

exchange

= Ω −
Ω2

4
+

Ω3

24
− … =

∞

∑
n=1

(−1)n−1 2
n! ( Ω

2 )
n

With Ω = Ω(xIP, ̂r, b̂)

32

⃗Δ =
2n

∑
i=1

⃗q⊥,i

Let the quark and anti quark (and gluon) collide with with  gluons keeping2n

(q + q̄)2 = M2
X  distributed by a Gaussian with width ⃗q⊥i QS .

2e−Ω/2γN(n + 1, − Ω/2) < ϵ  Increase  until condition is met. n

TO DO: Saturation in the Final State



TO DO 2:  
The t-dependence
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The Correct Way:

4 extra integrals (2 angles, , and )!  
5D Lookup tables! 

Possible, but unwieldy

r2 b2

TO DO: The t-dependence
Cyrille Marquet Phys.Rev.D 76 (2007), 094017
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The Good Enough Way:

Use available Sartre calculation of exclusive coherent  with 

  and interpolate/extrapolate the  dependence from 
respective vector-meson mass. 

This will yield an approximate t-dependence for a given point  

dσVM

dt
(Q2, W2, t)

VM = γ, ρ, ϕ, J/ψ, Υ… Mx

(Q2, W2, β)

TO DO: The t-dependence
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Inclusive Diffraction with Sartre 
Current Status

Current version on SVN:  
Can generate events with both  and  final states in ep and eAqq̄ qq̄g

To Do (short term): 
Implement saturation effects in final state 

Create full tables for several initial state species 
Thorough testing 

To Do (intermediate term): 
Implement t-dependence 

To Do (long term): 
Incoherent Diffraction?


