Imaging nuclei by smashing them

Jiangyong Jia

129**Xe**

¹⁹⁷Au

238

Stony Lrook University

Dec 17, 2024 BNL Colloquium

160

96**7**r

Traditional imaging method

$$\rho(xyz) = \frac{1}{V} \sum_{\substack{hkl \\ -\infty}}^{+\infty} |F(hkl)| \cdot e^{-2\pi i [hx+ky+lz-\phi(hkl)]}$$
Phases

Traditional imaging method

$$\rho(xyz) = \frac{1}{V} \sum_{\substack{hkl \\ -\infty}}^{+\infty} |F(hkl)| \cdot e^{-2\pi i [hx + ky + lz - \phi(hkl)]}_{\text{Phases}}$$

$$\frac{d\sigma^{\gamma^* p \to V p}}{dt} = \frac{1}{16\pi} \left| \left\langle A^{\gamma^* p \to V p} \left(x_P, Q^2, \overrightarrow{\Delta} \right) \right\rangle \right|^2$$

$$A \sim \int d^2b \, dz \, d^2r \, \psi^* \psi^V(\vec{r}, z, Q^2) e^{-i(\vec{b} - (\frac{1}{2} - z)\vec{r}) \cdot \vec{\Delta}} N(\vec{r}, x, \vec{b})$$

Image taken before destruction

Imaging by smashing: some examples

Smashing a deformed droplet on surface

F =
abla P

strongly-coupled cold atomic gas

 $L_{mfp}=1/
ho\sigma$

fast molecule stripping foil position and time sensitive detector -0.5 -1.0 -0.5 0.5 1.0 Normalized momentum, p.

Coulomb Explosion Imaging in Chemistry

fs laser

Instantaneous stripping of electrons and let atoms explode under mutual coulomb repulsion

Imaging by smashing: some examples

Smashing a deformed droplet on surface

 $F = \nabla P$

strongly-coupled cold atomic gas

Cience 238, 2120 (2003) $L_{mfp} = 1/\rho\sigma$

fs laser fast molecule stripping foil position and tim ensitive detecto -0.5 -1.0 1.0 0.5 Normalized momentum, d

Coulomb Explosion Imaging in Chemistry

Instantaneous stripping of electrons and let atoms explode under mutual coulomb repulsion

 $au \sim 10 {
m fm}/c$

expansion

 $au \sim 10^{15}~{
m fm}/c$

detection

Large entropy production enable a semi-classical description

• Initial condition is a fast snapshot of nuclear structure

 $au \sim 2 R_0 / \Gamma \sim 0.1 {
m fm} / c$

exposure

- Transformed to the final state via hydrodynamic expansion (EFT)
- Reverse-engineer to get snapshot, aided by large information output
 Ability to image ←→ QGP dynamics and properties

Imaging by smashing: high-energy collisions

Preserving the snapshot to the final state

Shape-flow transmutation via pressure-gradient force:

Preserving the snapshot to the final state

seen at single event level

Observables for event-by-event fluctuations

• Measure moments of $p(1/R, \varepsilon_2, \varepsilon_3...)$ via $p([p_T], v_2, v_3...)...$

. . .

Mean
$$\langle d_{\perp} \rangle$$
Variance: $\langle \varepsilon_{n}^{2} \rangle$, $\langle (\delta d_{\perp}/d_{\perp})^{2} \rangle$
Skewness $\langle \varepsilon_{n}^{2} \delta d_{\perp}/d_{\perp} \rangle$, $\langle (\delta d_{\perp}/d_{\perp})^{3} \rangle$
Kurtosis $\langle \varepsilon_{n}^{4} \rangle - 2 \langle \varepsilon_{n}^{2} \rangle^{2}$, $\langle (\delta d_{\perp}/d_{\perp})^{4} \rangle - 3 \langle (\delta d_{\perp}/d_{\perp})^{2} \rangle^{2}$
 $\langle v_{n}^{4} \rangle - 2 \langle v_{n}^{2} \rangle^{2}$, $\langle (\delta p_{T}/p_{T})^{4} \rangle - 3 \langle (\delta p_{T}/p_{T})^{2} \rangle^{2}$

$$\mathcal{E}_n \equiv arepsilon_n e^{ni\Phi_n} \propto \int_{f r} {f r}^n
ho({f r}) ~~ d_\perp \propto - \int_{f r} |{f r}^2|
ho({f r})$$

A plethora of measurements

• Single particle distribution Flow vector: $oldsymbol{V}_n = v_n e^{\mathrm{i}n\Psi_n}$

$$\frac{d^2 N}{d\phi dp_{\rm T}} = N(p_T) \left[1 + 2\sum_n v_{\rm n}(p_T) \cos n(\phi - \Psi_n(p_T)) \right]$$
$$= N(p_T) \left[\sum_{n=-\infty}^{\infty} V_{\rm n}(p_T) e^{in\phi} \right]$$
Radial flow Anisotropic flow

Two-particle correlation function

$$\left\langle rac{d^2 N_1}{d \phi d p_{\mathrm{T}}} rac{d^2 N_2}{d \phi d p_{\mathrm{T}}}
ight
angle \quad igapla \ \left\langle oldsymbol{V}_n(p_{T1}) oldsymbol{V}_n^*(p_{T2})
ight
angle \ n-n=0$$

Multi-particle correlation function

$$egin{aligned} &\langle [p_{\mathrm{T}}]^k rac{d^2 N_1}{d \phi d p_{\mathrm{T}}} \dots rac{d^2 N_m}{d \phi d p_{\mathrm{T}}}
ight
angle &\Rightarrow ig\langle [p_{\mathrm{T}}]^k oldsymbol{V}_{n_1} oldsymbol{V}_{n_2} \dots oldsymbol{V}_{n_m} ig
angle \ &p([p_{\mathrm{T}}], oldsymbol{V}_2, oldsymbol{V}_3 \dots) = rac{1}{N_{\mathrm{evts}}} rac{d N_{\mathrm{evts}}}{d[p_{\mathrm{T}}] d oldsymbol{V}_2 d oldsymbol{V}_3 \dots} \end{aligned}$$

EbyE fluctuations of size and shape

E-by-E flow amplitude distribution $p(v_n)$

Event-plane correlation $p(\Psi_n, \Psi_m, \Psi_k)$

 v_n amplitude correlation $p(v_n, v_m)$

illed Symbo

 $\sqrt{s_{NN}}$ (GeV)

20.409

Open Symbols ALICE Pb+Pb Seems we can infer the initial condition of QGP which carries imprints of the colliding nuclei.

But what kinds of images do we expect to get?

Intro to atomic nuclei at low energy

Many-body quantum systems, govern by short-range strong nuclear force Emergent properties in between discrete nucleon and bulk nuclear matter, like quantum dot. Configuration is one that minimizes E, which is often deformed away from magic numbers

Cluster of nucleons

Magic numbers: 2 8 20 28 50 82 126

Cluster of atoms Na cluster Cluster size (N Na₄₀ Effective Potential (eV) 2 8 18 20 34 40 10 20 Radius R (arb.units) Nan

10.1021/acs.inorgchem.6b02340

Atomic nuclei and their shapes

Many-body quantum systems, govern by short-range strong nuclear force Emergent properties in between bulk nuclear matter and discrete nucleon, like quantum doc. Configuration is one that minimizes E, which is often deformed away from magic numbers

Nuclear shapes at low energy: long exposure

Each DOF has zero-point fluctuations within certain timescale.

Spectroscopic methods probe a superposition of these fluctuations

Instantaneous shapes not directly seen \rightarrow intrinsic shape not observable at low E Infer shape from model comparison to energy-transition-lifetime measurements.

Nuclear shape at high-energy: smashing experiment

To see event-by-event shape directly, one must have access to instantaneous many-body correlations $\Psi(\mathbf{r}_1, \mathbf{r}_2...)$

We will see all DOFs longer than this timescale: $\tau > \tau_{expo}$ Nucleons, hadrons, quark, gluons, gluon saturations

Concept of shape is collision energy dependent

Sampled with A nucleons Spherical Woods-saxon

 γ_{expo}

Smashing experiment and nuclear structure

How to apply the method in practice?

Impact of deformation: head-on collisions

Collision geometry depends on the orientations: head-on collisions has two extremes body-body or tip-tip collisions

Body-body: large eccentricity large size

 $v_2 \nearrow p_T \searrow$ Tip-tip : small eccentricity small size

v₂↘ p_T↗

high E

Compare to collision of near spherical ¹⁹⁷Au,

- Deformation enhances the fluctuations of v₂ and [p_T].
- and leads to anti-correlation between v₂ and [p_T].

Compare two systems to disentangle global deformation and quantum fluctuation!

Impact of deformation: head-on collisions

Seen directly by comparing ²³⁸U+²³⁸U with near-spherical ¹⁹⁷Au+¹⁹⁷Au

Near-spherical \rightarrow flat ρ_2 vs centrality Strongly prolate \rightarrow decreasing of ρ_2 vs centrality

Ratios cancel final state effects and isolate the effects of initial state/nuclear structures!

U deformation dominates the ultra-central collisions (UCC) \rightarrow 50%-70% impact on <(δp_T)²> and <v₂²>, 300% for <v₂² δp_T >

More smooth centrality dependence for $\langle \delta p_T \rangle^2 \rangle$ than $\langle v_2^2 \rangle$ $\rightarrow v_2$ is dominated by v_2^{RP} (unaffected by deformation), having residual impact in UCC

Compared to hydrodynamic models

Compare with state-of-the-art ipglasma+music+UrQMD hydro model.

The $\langle (\delta p_T)^2 \rangle$ and $\langle v_2^2 \delta p_T \rangle$ data seems prefers value closer to $\beta_{2U} = 0.28$ and a small γ_U .

 $<v_2^2>$ prefer a smaller β_{2U} value

Ratios cancel final state effects

- Vary the shear/bulk viscosity in Music hydro model
 - Flow signal change by more than factor of 2, yet the ratio unchanged.

Sensitivity to other structure parameters

 R_0 , a_0 , higher-order deformation, nucleon separation

In ultra-central collisions, ratios are mainly controlled by β_{2U} and γ_{U} . In non-central collisions, v_2 ratio is also sensitive to nuclear skin Focus on 0-5% most central collisions to constrain the Uranium shape

Constraining the U238 shape

Confirming these relations, including strong sensitivity to triaxiality focus on $\langle (\delta p_T)^2 \rangle$, $\langle v_2^2 \delta p_T \rangle$

$$\begin{array}{l} \left\langle v_2^2 \right\rangle = a_1 + b_1 \beta_2^2 \ , \\ \left\langle (\delta p_{\rm T})^2 \right\rangle = a_2 + b_2 \beta_2^2 \ , \\ \left\langle v_2^2 \delta p_{\rm T} \right\rangle = a_3 - b_3 \beta_2^3 \cos(3\gamma) \end{array}$$

Results

26

 $y_{shift} + \ln(\sqrt{s}/\sqrt{s_r})$

High energy

Low energy

nature | Last updated Published on Nov 6 2024

<u>Imaging shapes of atomic nuclei in high-</u> <u>energy nuclear collisions</u>

Access & Citations

	https://doi.org/10.1038/s41586-024-08097-2				
45k	0	1			
Article Accesses	Web of Science	CrossRef			
natura					

nature

Explore content v About the journal v Publish with us v Subscribe

<u>nature</u> > <u>news & views</u> > article https://doi.org/10.1038/d41586-024-03466-3

NEWS AND VIEWS | 06 November 2024

Rare snapshots of a kiwi-shaped atomic nucleus

Smashing uranium-238 ions together proves to be a reliable way of imaging their nuclei. High-energy collision experiments reveal nuclear shapes that are strongly elongated and have no symmetry around their longest axis.

https://www.bnl.gov/newsroom/news.php?a=122119

NEWS | 06 November 2024

Smashing atomic nuclei together reveals their elusive shapes

A method to take snapshots of exploding nuclei could hold clues about the fundamental properties of gold, uranium and other elements.

By Elizabeth Gibney

https://www.nature.com/articles/d41586-024-03633-6

A general strategy for nuclear shape imaging Flow observable = k imes initial condition (structure) QGP response, a smooth function of N+Z Structure of colliding nuclei, pon-monotonic function of N and Z

Compare two systems X and Y of same mass but different structure

$$R_{\mathcal{O}}\equivrac{\mathcal{O}_{
m X+X}}{\mathcal{O}_{
m Y+Y}}pprox 1+c_1\Deltaeta_2^2+c_2\Deltaeta_3^2+c_3\Delta R_0+c_4\Delta a$$
 arXiv: 2111.15559

Deviation from unity depends only on their structural differences $c_1 - c_4$ directly probes energy deposition mechanism in the initial condition!

Isobar ⁹⁶Ru+⁹⁶Ru and ⁹⁶Zr+⁹⁶Zr collisions at RHIC 200 GeV

Originally designed to search for exotic magnetic effects

Isobar ⁹⁶Ru+⁹⁶Ru and ⁹⁶Zr+⁹⁶Zr collisions at RHIC 200 GeV

QM2022 poster, Chunjian Zhang

$$R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{\mathrm{Ru}}}{\mathcal{O}_{\mathrm{Zr}}}$$

Structure influences everywhere

Opportunity for precision structure study

Nuclear structure via v₂-ratio and v₃-ratio

$$R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{\mathrm{Ru}}}{\mathcal{O}_{\mathrm{Zr}}} \approx 1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta R_0 + c_4 \Delta a \quad \text{2109.00131}$$

Simultaneously constrain four structure parameters

Nuclear structure via v₂-ratio and v₃-ratio

- $\beta_{2Ru} \sim 0.16$ increase v_2 , no influence on v_3 ratio
- $\Delta a_0 = -0.06$ fm increase v_2 mid-central,
- Radius $\Delta R_0 = 0.07$ fm slightly affects v_2 and v_3 ratio.

Is ⁹⁶Zr octupole deformed?

Simultaneously constrain four structure parameters

Currently available collision systems

RHIC √s=200GeV	LHC √ <i>s</i> =5000 GeV						
$ \begin{array}{c} ^{197}Au + {}^{197}Au vs {}^{238}U + {}^{238}U \\ $	Establish methodology Large sensitivity 	$\beta_{2Xe} \gamma_{Xe}$ VS $208Pb+208Pb$ $\beta_{2Xe} \gamma_{Xe}$ Neutron skin					
$\begin{array}{c} {}^{96}\text{Ru} + {}^{96}\text{Ru} \text{ vs } {}^{96}\text{Zr} + {}^{96}\text{Zr} \\ \beta_{2\text{Ru}} & \beta_{3\text{Zr}} \\ {}^{\beta_{3\text{Zr}}} \\ {}^{\text{large skin}} \end{array}$	Establish precision 0.2% measurement error vs 5-15% signal High-order observables 						
d+ ¹⁹⁷ Au vs ¹⁶ O+ ¹⁶ O	Structure of light nucleiCluster, subnucleon structure.Benchmark ab-initio models	¹⁶ O+ ¹⁶ O vs ²⁰ Ne+ ²⁰ Ne?					
p+p, p+ ²⁷ Al, p+ ¹⁹⁷ Au, ³ He+ ¹⁹⁷ Au, ⁶³ Cu+ ⁶³ Cu, ⁶³ Cu+ ¹⁹⁷ Au	What can we learn from these?	p+p, p+ ¹⁶ O, p+ ²⁰⁸ Pb					

What other species to consider & what questions do they answer?

Future opportunities

High-energy: fast snapshot of nucleon distribution for any collision species. Low-energy: complexity & interpretation depends on location in nuclide chart

34

Odd N or Z nuclei

nuclear shape is often presumed to be similar to adjacent even-even nuclei.

their spectroscopic data are more complex due to the coupling of the single unpaired nucleon with the nuclear core.

by comparing the flow observables of odd-mass nuclei to selected even-even neighbors with established shapes, the high-energy approach avoids this complication.

Higher-order deformations β_3 and β_4

Ratio of v_n in UCC region are mainly sensitive to β_n

 β_{4U} constrained using v₄ ratio in central region

Order of v₃ reversed by considering non-zero $\beta_{3U} \beta_{4U}$ v₂ ratio is mostly affected by β_{2U} , but also β_{3U}

Shape fluctuation and coexistence

Same nuclei can have several low-lying states with different intrinsic shapes

High-energy collisions are sensitive only to ground state shape, avoid shape variations during transitions

HI collision to probe shape entanglement!

186Pb

$\begin{array}{l} \begin{array}{l} \textbf{Shape fluctuations via high-order correlations.} \\ \langle (\delta p_{\mathrm{T}})^2 \rangle = a_2 + b_2 \beta_2^2 \ , \\ \langle v_2^2 \delta p_{\mathrm{T}} \rangle = a_3 - b_3 \beta_2^3 \cos(3\gamma) \end{array} & \left\langle \beta_2^2 \right\rangle = \bar{\beta}_2^2 + \sigma_{\beta_2}^2 \qquad \left\langle \cos(3\gamma)^2 \right\rangle = \overline{\cos(3\gamma)}^2 + \sigma_{\cos(3\gamma)^2} \end{array}$

two- or three-particle correlations can't distinguish between static β_2 , γ from their fluctuations.

Equal mix of prolate and oblate looks like triaxial

STAR U238 measurement doesn't distinguish between static γ or γ fluctuations

$\begin{array}{l} \begin{array}{l} \textbf{Shape fluctuations via high-order correlations.} \\ \langle (\delta p_{\mathrm{T}})^2 \rangle = a_2 + b_2 \beta_2^2 \ , \\ \langle v_2^2 \delta p_{\mathrm{T}} \rangle = a_3 - b_3 \beta_2^3 \cos(3\gamma) \end{array} & \left\langle \beta_2^2 \right\rangle = \bar{\beta}_2^2 + \sigma_{\beta_2}^2 \qquad \left\langle \cos(3\gamma)^2 \right\rangle = \overline{\cos(3\gamma)}^2 + \sigma_{\cos(3\gamma)^2} \end{array}$

two- or three-particle correlations can't distinguish between static β_2 , γ from their fluctuations.

Neutrinoless double-beta decay

Need to model the overlap of nuclear wavefunction between initial nuclei and its final isobar nuclei.

Uncertainty in matrix element leads to x10 change in lifetime

Isobar collisions allow us to determine their shape differences, thus could help reduce the uncertainty of NME.

Imaging the radial structure: $\rho(\vec{r}) =$

• Radial parameters R_0 , a_0 are properties of one-body distribution $\rightarrow \langle \mathbf{p}_T \rangle$, $\langle \mathbf{N}_{ch} \rangle$, $\mathbf{v}_2^{RP} \sim \mathbf{v}_2$ (4), σ_{tot} ,

 $\overline{1+e^{(r-{I\!\!R}_0(1+\sum_neta_nY^0_n(heta,\phi))/a_0}}$

Summary

- Imaging-by-smashing is a discovery tool for low- and high-energy nuclear physics.
- Low- and high-energy techniques together enable study of evolution of nuclear structure across energy and time scales.
- Future research should conduct collider experiments with selected isobaric pairs

A	isobars	A	isobars	A	isobars	A	isobars	Α	isobars	A	isobars
36	Ar, S	80	Se, Kr	106	Pd, Cd	124	Sn, Te, Xe	148	Nd, Sm	174	Yb, Hf
40	Ca, Ar	84	Kr, Sr, Mo	108	Pd, Cd	126	Te, Xe	150	Nd, Sm	176	Yb, Lu, H
46	Ca, Ti	86	Kr, Sr	110	Pd, Cd	128	Te, Xe	152	Sm,Gd	180	Hf, W
48	Ca, Ti	87	Rb, Sr	112	Cd, Sn	130	Te, Xe, Ba	154	Sm,Gd	184	W, Os
50	$\mathrm{Ti},\mathrm{V},\mathrm{Cr}$	92	Zr, Nb, Mo	113	Cd, In	132	Xe, Ba	156	Gd,Dy	186	W, Os
54	Cr, Fe	94	Zr, Mo	114	Cd, Sn	134	Xe, Ba	158	Gd,Dy	187	Re, Os
64	Ni, Zn	96	Zr, Mo, Ru	115	In, Sn	136	Xe, Ba, Ce	160	Gd,Dy	190	Os, Pt
70	Zn, Ge	98	Mo, Ru	116	Cd, Sn	138	Ba, La, Ce	162	Dy,Er	192	Os, Pt
74	Ge, Se	100	Mo, Ru	120	Sn, Te	142	Ce, Nd	164	Dy,Er	196	Pt, Hg
76	Ge, Se	102	Ru, Pd	122	Sn, Te	144	Nd, Sm	168	Er,Yb	198	Pt, Hg
78	Se, Kr	104	Ru, Pd	123	Sb, Te	146	Nd, Sm	170	Er,Yb	204	Hg, Pb

2102.08158

Shape Coexistence Workshop - 2023

