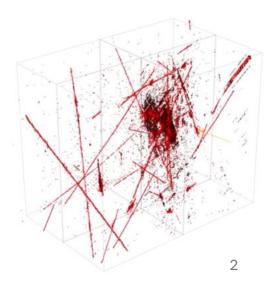
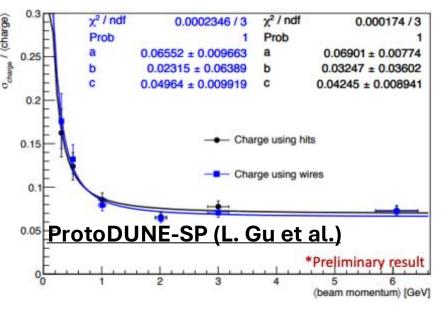

# Progress and Plans: Wire-Cell at ProtoDUNE


Wenqiang Gu, Jay Hyun Jo, Haiwang Yu

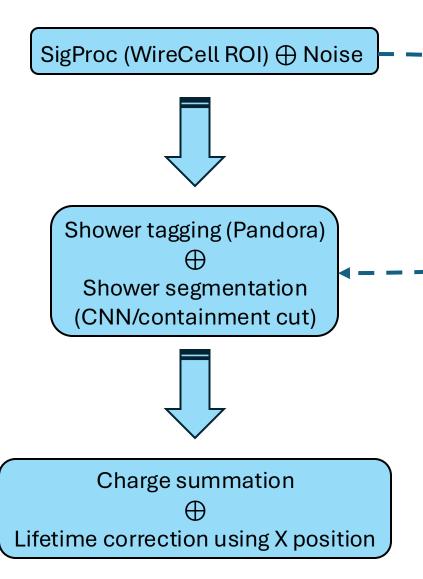
### ProtoDUNE HD: in progress

- Noise filter & data quality (Xuyang):
  - FEMB negative pulses => bad regions in sigproc
  - Coherent mitigation
- CE calibration (Karla)
- SigProc in PDHD APA1
  - Refactored sigproc chain (Done)
  - Field response calibration (Xuyang et al.)
  - DNN ROI (Sergey, Jay et al.)
- 3D imaging (Haiwang, Jay)
- Clustering & QL matching (Haiwang)
- More contribution to physics analysis


APA 1
Power spectral density






#### EM shower reco resolution

|                                    | $\sigma_{\rm E}/{\rm E}[{\rm GeV}]$ (%) | $\sigma_{ m E}/{ m E}$ @1GeV (%) |
|------------------------------------|-----------------------------------------|----------------------------------|
| DUNE CDR [1]                       | $15 / \sqrt{E} + 2$                     | 17                               |
| DUNE sensitivity paper [2]         | $9/\sqrt{E}+4$                          | 13                               |
| DUNE TDR [3]                       | 8 (spectrum avg.)                       | -                                |
| SLAC GNN [4]                       | $4.1 / \sqrt{E} + 1.4$                  | 5.5                              |
| ProtoDUNE-SP<br>(L. Gu et al.) [5] | -                                       | 8.6                              |



- [1]: arXiv:1512.06148 [physics.ins-det]
- [2]: arXiv:2006.16043 [hep-ex], arXiv:2109.01304 [hep-ex]
- [3]: arXiv:2002.03005 [hep-ex]
- [4]: arXiv:2007.01335 [physics.ins-det]
- [5]: DUNE DocDB #30975 (poster) #24842 (technote)
- An end-to-end analyses at ProtoDUNE, e.g. exclusive Xsec, requires a more complete reconstruction with particle flow (trajectory, PID, etc.)
- Electron shower energy reconstruction is essentially a simpler 2D measurement (sum of all charges) but with some advanced tool for shower separation (imaging, clustering)

#### Standard analysis flow in ProtoDUNE



3D Imaging (Improved Noise?)

⊕
3D charge ported to 2D

- DUNE:ProtoDUNE-SP Run 5815 Event 962

  100

  100

  100

  1000

  2000

  3000

  Time Tick
  - CNN: shower score at hit level EPJC 82 (2022) 10, 903

- To what extend has the noise affected the resolution?
  - DNN ROI & 3D imaging may further reduce noise
- WireCell may have its own shower segmentation using clustering
- WireCell could have lifetime correction with a known X position using QL matching
- More functions could be available in the future

#### Conclusion

- ProtoDUNE HD: Significant progress, particularly focused on APA1
  - Noise filtering, CE calibration, and field response simulation
- Wire-Cell Toolkit: Continued development and refinement
  - DNN ROI, 3D imaging, clustering, QL matching
- Opportunities for Improvement and Contribution
  - EM shower energy reconstruction presents a valuable topic to contribute, which can also help enhance Wire-Cell tools

## Backup

**Table 2**: A summary of beam line instrumentation logic used in the identification of particle types. Each cell reflects how a particular type of instrumentation is used at a given reference momentum. When time of flight is used, the values of the lower and upper cuts are given in nanoseconds. In the case of the high-pressure Cherenkov (XCET-H) and the low-pressure Cherenkov (XCET-L), zero and one represent the absence and presence of a signal respectively. When a given piece of instrumentation is not involved in a logic decision at a given momenta, a dash is used.

|     |          | Momentum (GeV/c) |          |   |       |  |
|-----|----------|------------------|----------|---|-------|--|
|     |          | 1                | 2        | 3 | 6 - 7 |  |
| e   | TOF (ns) | 0, 105           | 0, 105   | _ | _     |  |
|     | XCET-L   | 1                | 1        | 1 | 1     |  |
|     | XCET-H   | _                | -        | 1 | 1     |  |
| μ/π | TOF (ns) | 0, 110           | 0, 103   | _ | _     |  |
|     | XCET-L   | 0                | 0        | 0 | 1     |  |
|     | XCET-H   | _                | -        | 1 | 1     |  |
| K   | TOF (ns) | _                | -        | _ | _     |  |
|     | XCET-L   | _                | _        | 0 | 0     |  |
|     | XCET-H   | _                | _        | 0 | 1     |  |
| p   | TOF (ns) | 110, 160         | 103, 160 | _ | _     |  |
|     | XCET-L   | 0                | 0        | 0 | 0     |  |
|     | XCET-H   | _                | _        | 0 | 0     |  |