

Low voltage power for MPGD frontends and VTRX+ pigtail:

Work in progress

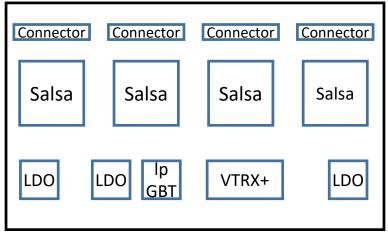
I. Mandjavidze Irfu, CEA Saclay

Briefly flashed during eDAQ WG meeting on Oct 24, 2024

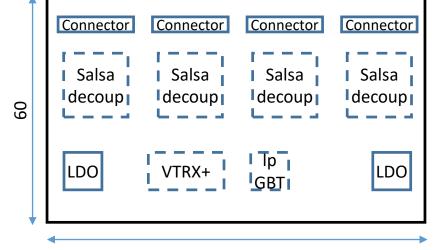
For details see: https://indico.bnl.gov/event/25106/contributions/97861/attachments/57983/99568/241017_IM_lpGbt2Salsa.pdf

256-channel FEB

- → lpGBT provides a bidirectional interface between 4 Salsas and remote backend FPGA (on RDO or DAM)
 - Clock, fast synchronous commands, asynchronous slow control, physics and calibration data, monitoring
- → VTRX+ is used with only one TX line
- → All ASICs are radiation hard
- RDO or DAM: common hardware with FireFly transceivers from Samtec
 - → Placed anywhere in user friendly area
 - No particular restrictions on power consumption, cooling infrastructure, radiation, magnetic field



256-channel lpGBT-based FEB for CyMBaL : dimensions



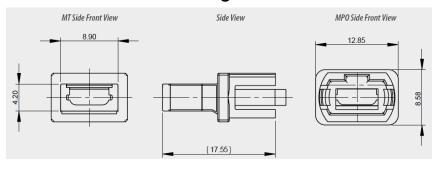
- Assuming 16 x 16 ball 1 mm pitch BGA package for Salsa
- Low profile 40-pin connectors for input signals over micro-coaxial cables
- Active components on both sides of the board
- Length and width give an idea
- Height of the board
 - → Need to accommodate cooling
 - → Need to include mechanical fixture for VTRX+ connector
 - The fragile optical pigtail to be secured within the board
- On-board linear low dropout regulators
- Radiation-hard magnetic field tolerant DC/DC converters
 - → On a companion board
 - → Count on common collaboration efforts
 - Type, surface including air core, height, shielding, cooling

Bottom layer

FEB height: ~10 mm

Protect fragile VTRX+ and its pigtail by containing it within the FEB

Short pigtail / on board

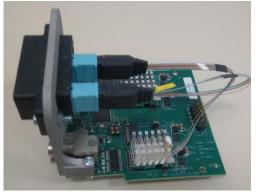

Fibers of adapted length between patch panels

Short pigtail / on board

- → Common practice for commercial FireFly components in industry and VTRX predecessor in HEP community
- → Can limit pigtail length options to very few if not to 1 value : as small as farthest placement from front panel
 - Potential to have a common pool of VTRX+ components for all subsystems
- → Easier maintenance

MT-MPO low-profile adapter from Senko: 7P5-SM-1

→ 8.6 mm height



VTRX example

FireFly example

256-channel lpGBT-based FEB: power

Raw power budget with minimal margin: ~6.8 W

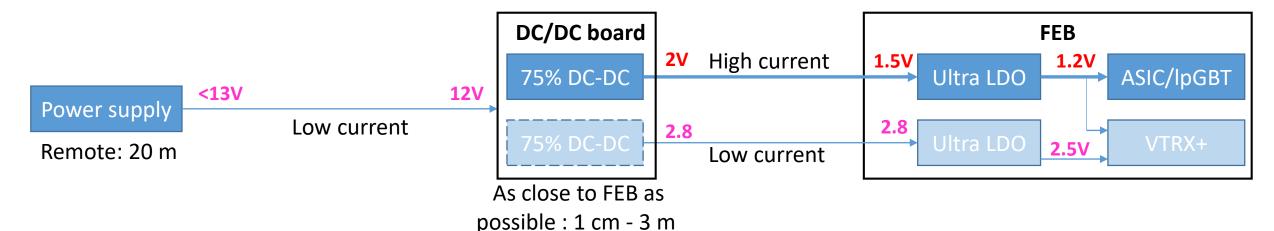
- \rightarrow 27 mW / ch
- \rightarrow 1.5V 6.7 W
- \rightarrow 2.8V 0.2W

Assume 8.5 W for safety: 25% extra

- \rightarrow 33 mW / ch
- \rightarrow 1.5 V 5.6 A
- \rightarrow 2.8 V 90 mA
- Where to place DC/DC converters?

FEB components and their power consumption

Component	Vin V	Current mA	Power mW	Comment
Salsa 1	4.2	1 000	1 200	15 m) \/ /ah
Salsa 2	1.2	1 000	1 200	15 mW/ch
LDO Salsa 1-2	1.5	2 000	600	Can use 2 LDOs to avoid hotspot
Salsa 3	1.2	1 000	1 200	15 mW/ch
Salsa 4	1.2	1 000	1 200	15 mW/ch
LDO Salsa 3-4	1.5	2 000	600	Can use 2 LDOs to avoid hotspot
IpGBT	1.2	420	500	Probably 25% overestimated
LDO lpGBT/VTRX+	1.5	440	130	
VTRX+	1.2	20	25	
	2.5	70	175	
LDO VTRX+	2.8	70	20	

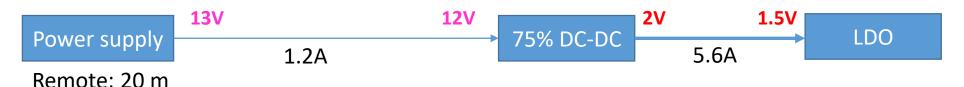


FEB power distribution

Reminder: https://indico.bnl.gov/event/22316/contributions/87363/attachments/52727/90159/240215_IM_MpgdPower.pdf

- DC/DC-based LV distribution: to be magnetic field tolerant
 - → Remote power supply distributes 12V with a low voltage drop over ~20 m cables
 - Say less than 1V
 - → Low cross-section power cables
 - The lower the drop the lower the power dissipation in cables but the large is their cross-section

- DC/DC regulators
 - → Might be bulky and a source of EMI
 - Space + extra material for shielding
 - → Distribute high current for 1.2V power
 - Should be close to FEBs
 - Avoid significant power drop and power dissipation in cables
 - Avoid pickup noise and ground-loops



LV cables from power supply to DC/DC regulators



Assumptions:

- → Remote LV power supply 20 m away
- → 1V voltage from between LVPS and DC/DC regulators
 - 13V LVPS output voltage for 12V DC/DC input
- → 75% DC/DC efficiency
 - 1.2 A over LVPS cables

- LVPS power: 15 W / FEB
 - → 60 mW / channel
 - Remember: 15 mW / channel for Salsa!
 - → Power dissipation (loss) over LVPS cables : 1.2 W
- LVPS cables cross-section 0.8 mm² or 18 AWG
 - → Cable harness with two power cables and two sense wires
 - \rightarrow Alpha Wire 2424C : commercial harness including shield and coating : $\emptyset = 6$ mm
- Reminder: there are 160 CyMBaL FEBs

LV cables from DC/DC regulators to LDO regulators

- Assume 0.5V voltage from between DC/DC and LDO regulators
 - → Reminder : no remote sense regulation
 - → 2V DC/DC output voltage for 1.5V LDO input
 - → 2.8W power dissipation (loss)

12V → 75% DC-DC		2V		1.5V	1.5V Ultra LDO	1.2V
1.2A	75% DC-DC		5.6A		Oltra LDO	
P	As close to FEB	as				
ро	ssible : 1 cm -	3 m				

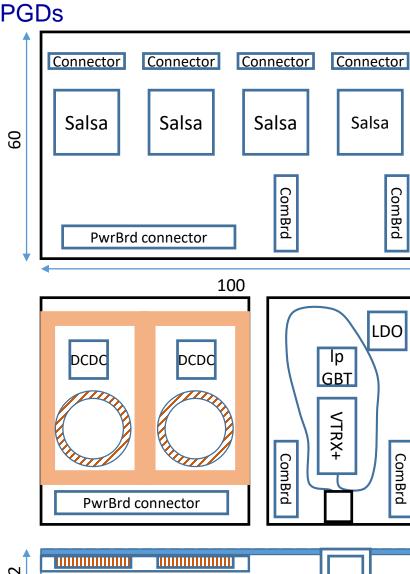
Cable cross-section vs DC/DC-LDO distance

DC/DC-LDO Distance	Cross section		Harness + 2.5V cabs	
cm	mm ²	AWG	Ø mm	Alpha Wire
30	0.1	26	4.6	3464C
50	0.2	24	5	6328
100	0.4	20	5.4	2414C
200	0.8	18	6	2424C
300	1.2	16		

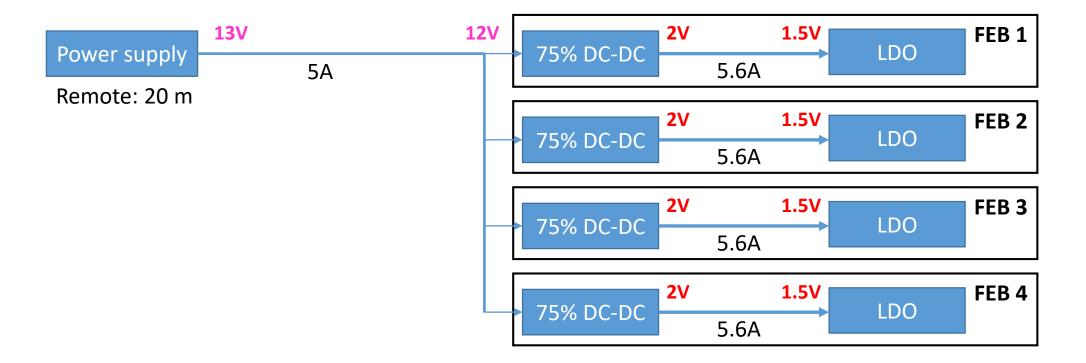
- Reminder: there are 640 MPGD FEBs with tailored power cable Assemblies
- If possible, having DC/DC board next to FEB is preferred

Summary

- VTRX+ and its pigtail :
 - → Secured in FEB
 - → Connection to external world through MT MPO adapter on FEBs front panel
- MPGD FEB low voltage power supply
 - → ASICs require on-board ultra LDO regulators
 - → 2 power supply inputs per FEB : high power 1.5V and week 2.8V
 - Respectively for 1.2V and 2.5V on-board voltages
 - → 8.5W per FEB with 25% safety margined
 - 33 mW / channel compared to 15 mV / channel assumed for Salsa
- Magnetic field tolerant compact DC/DC converters are crucial
 - → Placed close to FEBs
 - DC/DC to FEB LV cable diameter may vary from 4.5mm to 6.5mm depending on length
 - Respectively 30 cm to 3 m
 - Accepting 0.5V voltage drop over cables 2.8 W dissipation (loss)
 - Privilege DC/DC converters on FEBs
 - · Avoids extra 11 mW / ch due to cables
 - → Placed ~20 m away from LV power supply
 - LV cable assembly of 6 mm in diameter
 - Accepting 1V voltage drop over 20 m cables: 1.2W dissipation (loss)
- Low voltage power supply: 15 W per FEB
 - → 60 mW / channel compared to 15 mV / channel assumed for Salsa
- Question: How others are doing, given that the consumption of ASICs and constriction of FEBs are very similar if not more complex?


Backup

FEB organization?


- Understand if a daughter card hosting lpGBT and VTRX+ can suite all MPGDs
 - → Placing lpGBT on FEB makes it high-density high-speed grade PCB
 - 10 Gbit/s link speed
 - 0.5 mm pitch 289-ball (17x17) BGA
 - \rightarrow Pros
 - Production of a large number communication cards common to MPGDs
 - Form-factor adapted low complexity "cheap" FEBs
 - → Cons
 - More types of PCBs to produce and maintain
- Understand if a DC/DC power mezzanine can fit all MPGDs
 - → Pros
 - Avoids LV cables, ground loops, improves regulation
 - → Cons
 - Extra material due to air core and shield

A power harness per CyMBaL detector module : 4 FEBs

- Reasonable assumption for LVPS power cable cross-section: 12 AWG or 3.3 mm²
 - → Cable harness with two power cables and two 0.5 mm² sense wires
- Reminder: 32 LV power harnesses for 32 CyMBaL detector modules