

GL1 matching study(2)

Jaein Hwang

2024/10/16

Motivation Review(1)

https://indico.bnl.gov/event/25091/contributions/97557/attachments/5778 2/99297/INTT_meeting_gl1_10_7.pdf

Trigger type	Total event	Matched event	Ratio(%)
All	50000	46365	92.7%
Clock	749	289	38.6%
MBD N&S	5454	5831	93.5%
MBD N&S 10>vtx	9195	8731	95.0%

Gl1 study was performed for the cross-check purpose

SPHENIX

Could see trigger dependence

Motivation Review(2)

https://indico.bnl.gov/event/25091/contributions/97557/attachments/5778 2/99297/INTT meeting gl1 10 7.pdf **@ From Genki**

HENIX

Trigger type	Ratio-Jaein (%)	Ratio-Genki (%)
All	92.7%	82%
Clock	38.6%	43%
MBD N&S	93.5%	77%
MBD N&S 10>vtx	95.0%	82%

- GL1 finding ratio is much higher than Genki's previous result <u>https://indico.bnl.gov/event/24711/contributions/96287/attach</u> <u>ments/57049/97903/20240904_streaming_timing.pdf</u>
- Genki's result also indicates different trigger type would give us different matching ratio. But we have difference btw genki's result & jaein's result

@ FI	Iom Genki		S	PHENIX	K
Bit Na	me	#match	#all	Ratio	
0 CI	lock	6	14	0.43	
1 ZI	OC South	0	0		
2 ZI	OC North	6	14	0.43	
3 ZI	DC N&S	24	43	0.56	
4 H(CAL Single	24	43	0.56	
5 H(CAL Coincidence	24	43	0.56	
6		24	43	0.56	
7		0	0		
8 ME	30 S>=1	16	31	0.52	
9 ME	30 N>=1	4	7	0.57	
10 ME	3D N&S>=1	100	130	0.77	
11 ME	30 N&S>=2	26	34	0.76	
12 ME	BD N&S>=1 vtx<10cm	216	265	0.82	
13 ME	3D N&S>=1 vtx<30cm	57	73	0.78	
14 ME	BD N&S>=1 vtx<60cm	190	244	0.78	
15 HC	CAL, Singles+MBD NS>=1	32	41	0.78	
16 Je	et 6GeV+MBD NS>=1	177	224	0.79	
17 Je	et 8GeV+MBD NS>=1	141	168	0.84	
18 Je	et 10GeV+MBD NS>=1	242	300	0.81	
19 Je	et 12GeV+MBD NS>=1	12	21	0.57	
20 Je	at 6GeV	224	280	0.80	
21 Je	at 8GeV	320	390	0.82	
22 Je	et 10GeV	281	347	0.81	
23 Je	et 12GeV	215	259	0.83	
24 Pi	hoton 2GeV+MBD NS>=1	52	73	0.71	
25 P	noton 2GeV+MBD NS>=2	75	98	0.77	
26 P	hoton 2GeV+MBD NS>=3	310	381	0.81	
27 P	hoton 2GeV+MBD NS>=4	82	91	0.90	
28 Pi	noton 2GeV	246	309	0.80	
29 PI	noton 3GeV	134	163	0.82	
30 PI	noton 4GeV	584	709	0.82	
31 P	noton 5GeV	213	254	0.84	
all al	1	638	778	0.82	

Only 1k events were analyzed for each trigger.

Potential Divergences btw analyses

- # of events : Jaein : 50k / Genki : 1k
- Hot channel rejection : Produced by same algorithm
 -> But potentially version can be different
- Date to produce DST file

-> intt_pool (decoder for evt to InttRawHit) or Combiner macro could be different version

Jaein uses InttRawHit / Genki uses TRKR_HIT for scanning Gl1 associated hit

Potential Divergences (update)

Every analysis has been performed with same condition listed below

- # of events : Jaein : 50k / Genki : 1k 50k
- Hot channel rejection : Produced by same algorithm

-> But potentially version can be different Importing same hot channel map

- Date to produce DST file

-> intt_pool (decoder for evt to InttRawHit) or Combiner macro could be different version DST file created by most recent version macro

Jaein uses InttRawHit / Genki uses TRKR_HIT for scanning Gl1 associated hit That is interesting to keep! Let's revisit if we see serious problem again

How to perform Genki's analysis? – Result(1)

https://github.com/sPHENIX-Collaboration/analysis/tree/master/INTT_preliminary/202409_performance/timing

- Code is available in GitHub already for preliminary procedure ${igodot}$
- Small modification was made (don't skip event which has 0 hit from INTT)

I can have similar plot for previous preliminary request! Genki's code has been successfully performed ⁽²⁾

How to perform Genki's analysis? – Result(2)

https://github.com/sPHENIX-Collaboration/analysis/tree/master/INTT_preliminary/202409_performance/timing

Finding efficiency from MC study

From Genki's MBD simulation result(31 July weekly INTT meeting)

https://indico.bnl.gov/event/24367/contributions/94712/attachments/56271/96316/20240731_INTT_cluster.pdf title

SPHENIX

If MBD trigger 10>vtx is required, Suggested GL1 finding efficiency by MC is 96 – 97% Now, we have 95%. Any possible reason?

Further Study(1)

From Genki's MBD simulation result(31 July weekly INTT meeting)

https://indico.bnl.gov/event/24367/contributions/94712/attachments/56271/96316/20240731_INTT_cluster.pdf

If MBD trigger 10>vtx is required, Suggested GL1 finding efficiency from MC 96 – 97% Now, we have 95%. Any possible reason?

- 4 half ladders masked

could be minor since INTT has 4 layers.

Further Study(2)

From Genki's MBD simulation result(31 July weekly INTT meeting)

https://indico.bnl.gov/event/24367/contributions/94712/attachments/56271/96316/20240731_INTT_cluster.pdf

MBD ONLINE MONITOR

Run #50889 Events: 16942 Date:Fri Aug 9 10:20:15 2024

If MBD trigger 10>vtx is required, Suggested GL1 finding efficiency from MC 96 – 97% Now, we have 95% Any possible reason?

Data taken in 0 X-ing angle

title

MBD z-vertex trigger selection DO NOT CUT all collision out of 10 cm. (For sure, trigger selection can improve finding efficiency as we have seen)

Further Study with another run(53227)

Intt Hit Map Run 53227, Events: 140822297, Sun Sep 15 10:31:02 2024

MBD ONLINE MONITOR

Run #53227 Events: 161115 Date:Sun Sep 15 10:30:25 2

GOOD!

Only 1 half ladder (in total) masked due to no-bias **1.5 mrad X-ing angle -** Much low probability having collision from |z| > 10 cm

Result(Run 53227 / All trigger used)

Result(Run 53227 / MBD vtx<10 used)

Summary result table

Trigger type	Ratio-Jaein (%)	Ratio-Genki old(%)	Ratio-Genki new(%)
All	92.7%	82%	92.7%
Clock	38.6%	43%	-
MBD N&S	93.5%	77%	-
MBD N&S 10>vtx	95.0%	82%	95.0%

Very nice consensus achieved! Should be less than >0.01% disagreement

Note	Run 50889	Run 53227
All	92.7%	96.0%
MBD N&S 10>vtx	95.0%	96.7%
# of masked ch	4 half ladder+@	1 half ladder + @
X-ing angle	0 mrad	1.5 mrad

With 1.5 X-ing angle, we have nice agreement with MC in terms of the GL1 finding efficiency

title

SPHEND

Q) Why did Takashi see the difference between two streaming runs?

Q) Why did Takashi see the difference between two streaming runs?

Streaming Run 47977(Big Partition)

94%

MBD ONLINE MONITOR

2024 Run #47977 Events: 7269 Date: Thu Jul 11 02:46:05

0 mrad X-ing angle

Q) Why did Takashi see the difference between two streaming runs?

Streaming Run 46099(INTT LOCAL) **97%** Run 46090(Big Partition)

Streaming Run 47977(Big Partition) **94%**

un 46090 Trigger Configuration

L1 input channel	Triggerdelay	switchyard	Trigger input channel	Name	enabled	Scaledown	Raw	Live	Scaled	Ľ											
)	0	0	0	Clock	yes	off	30315169425	28379515071	0	9	LL1 input channel	Triggerdelay	switchyard	Trigger input channel	Name	enabled	Scaledown	Raw	Live	Scaled	Live
	0	0	1	ZDC South	yes	off	63563984	59450156	0	9	0	0	0	0	Clock	yes	93831	8798100995	7295288167	77748	82.9
2	0	1	2	ZDC North	yes	off	56380443	52737364	0	9	1	0	0	1	ZDC South	yes	off	98056199	81370897	0	83.0
3	5	2	3	ZDC Coincidence	yes	6	3926507	3670489	524355	9	2	0	1	2	ZDC North	yes	off	88857939	73734297	0	83.0
1	5	3	4	HCAL Singles	yes	off	2090504	1953997	0	9	3	5	2	3	ZDC Coincidence	yes	23	8612286	7143586	297649	82.9
5	0	5	5	HCAL Coincidence	yes	off	30315169425	28379515071	0	9	4	5	3	4	HCAL Singles	yes	off	6059057	5030119	0	83.0
5	0	6	6		ves	off	0	0	0	с	5	0	5	5	HCAL Coincidence	yes	off	8798100995	7295288167	0	82.9
1	0	7	7		ves	off	0	0	0	с	6	0	6	6		yes	off	0	0	0	0
2	5	8	8	MBD S >= 1	Ves	off	562733357	525552688	0	q	7	0	7	7		yes	off	0	0	0	0
, ,	5	0	0	MBD N >= 1	vec	off	469768166	438726182	0	9	8	4	8	8	MBD S >= 1	yes	off	1041513591	864292566	0	83.0
0	5	9	5		yes	011	409708100	438720182	0	9	9	4	9	9	MBD N >= 1	yes	off	881932437	731578171	0	83.0
	5	10			yes	°	2/2/8/401	255087491	28343054	9	10	4	10	10	MBD N&S >= 1	yes	726	675707193	560570081	771073	83.0
1	5	11	11	MBD N&S >= 2	yes	off	131410329	122894101	0	9	11	4	11	11	MBD N&S >= 2	yes	off	465763187	386418080	0	83.0
2	5	12	12	MBD N&S >= 1, vtx < 10 cm	yes	off	117732721	110109267	0	9	12	4	12	12	MBD N&S >= 1, vtx < 10 cm	ves	20	91622735	76032910	3620614	83.0
3	5	13	13	MBD N&S >= 1, vtx < 30 cm	yes	off	233569825	218446324	0	9	13	4	13	13	MBD N&S >= 1 vtx < 30 cm	Ves	off	246004240	204140857	0	83.0
4	5	14	14	MBD N&S >= 1, vtx < 60 cm	yes	off	262279062	245292459	0	9	14	-	14	14	MPD NRS >= 1 ytx < 60 cm	yes	off	492526505	401200777	0	03.0
5	5	15	15	HCAL Singles + MBD NS >= 1	yes	off	59800244	55930636	0	9	14	4	14	14		yes		465520505	401209777	0	03.0
6	5	8	16	Jet 6 GeV + MBD NS >= 1	yes	off	2035974	1893360	0	9	15	4	15	15	HCAL Singles + MBD NS >= 1	yes	off	63978844	53095475	0	83.0
7	5	9	17	Jet 8 GeV + MBD NS >= 1	yes	0	299050	270520	270520	9	16	4	8	16	Jet 6 GeV + MBD NS >= 1	yes	off	3747509	3104690	0	82.8
8	1	18	18	Jet 10 GeV + MBD NS >= 1	yes	0	171620	152065	152065	8	17	4	9	17	Jet 8 GeV + MBD NS >= 1	yes	0	463729	382412	382412	82.5
											18	1	18	18	Jet 10 GeV + MBD NS >= 1	yes	0	127180	104424	104424	82.1

Run 47977 Trigger Configuration

Only Physics Trigger included (no clock)

2024-10-16

Clock trigger also included Can decrease matching ratio

Understanding previous unsolved(?) issue

Let's try to answer previous issue!

- Q1) Difference between two analysis results (Genki/Jaein)
 - A) needed to have apple to apple comparisons
 - Confirmed by careful review of analysis procedure

Q2) Low Gl1 finding efficiency

A1) Trigger configuration – Confirmed by Trigger selection

ex) Clock trigger can clearly contaminate Gl1 finding efficiency

A2) MBD 10 cm > z-vtx trigger cannot cut every collision from z-vtx>10cm

- Confirmed by two different X-ing angle data set

Q3) Why did Takashi see the difference between two streaming runs?

-> Answer is same as Q2).

Note	Run 50889	Run 53227
All	92.7%	96.0%
MBD N&S 10>vtx	95.0%	96.7%
# of masked ch	4 half ladder+@	1 half ladder + @
X-ing angle	0 mrad	1.5 mrad

backup

Some QA before GL1 matching ratio calculation

- - Run 50889
 - INTT 0 used
 - 50,000 events used
 - Hot channel rejected
 - We can see clear correlation btw INTT and GL1

Some QA before GL1 matching ratio calculation

SPHE

@ From Genki

Summary

Takashi's latest report

Takashi's first report

GL1 finding efficiency

- Takashi's first report: 97.3%
- Takashi's latest: 94 95%
- Suggested efficiency from MC study: 96 97%

Note: MBD trigger mimic needs to be checked by the MBD group.

title

Simulated MBD trigger

@ From Genki

What about GL1 matching?

Trigger type?:

The trigger type (clock, MBD N&1 ≥ 1 , etc.) should affect to the GL1 matching ratio. Thanks to Jaein, I could get information like:

153	<pre>std::vector < int > InttStreamingTiming::GetTriggerBits()</pre>
154	{
155	
156	<pre>uint64_t trigger_vector = gl1>getScaledVector();</pre>
157	
158	<pre>vector < int > rtn;</pre>
159	<pre>while(trigger_vector != 0)</pre>
160	{
161	<pre>int this_bit = 0 ;</pre>
162	this_bit = trigger_vector & 1;
163	// cout << std::bitset<32>(trigger_vector) << " "
164	// << this_bit << "\t";
165	
166	<pre>trigger_vector = trigger_vector >> 1;</pre>
167	
168	<pre>//cout << std::bitset<32>(trigger_vector) << endl;</pre>
169	
170	rtn.push_back(this_bit);
171	}

I don't see trigger dependence. The matching ratio is always too low. I think I'm wrong.

Bit	Name	#match	#all	Ratio
0	Clock	6	14	0.43
1	ZDC South	0	0	
2	ZDC North	6	14	0.43
3	ZDC N&S	24	43	0.56
4	HCAL Single	24	43	0.56
5	HCAL Coincidence	24	43	0.56
6		24	43	0.56
7		0	0	
8	MBD S>=1	16	31	0.52
9	MBD N>=1	4	7	0.57
10	MBD N&S>=1	100	130	0.77
11	MBD N&S>=2	26	34	0.76
12	MBD N&S>=1 vtx<10cm	216	265	0.82
13	MBD N&S>=1 vtx<30cm	57	73	0.78
14	MBD N&S>=1 vtx<60cm	190	244	0.78
15	HCAL, Singles+MBD NS>=1	32	41	0.78
16	Jet 6GeV+MBD NS>=1	177	224	0.79
17	Jet 8GeV+MBD NS>=1	141	168	0.84
18	Jet 10GeV+MBD NS>=1	242	300	0.81
19	Jet 12GeV+MBD NS>=1	12	21	0.57
20	Jet 6GeV	224	280	0.80
21	Jet 8GeV	320	390	0.82
22	Jet 10GeV	281	347	0.81
23	Jet 12GeV	215	259	0.83
24	Photon 2GeV+MBD NS>=1	52	73	0.71
25	Photon 2GeV+MBD NS>=2	75	98	0.77
26	Photon 2GeV+MBD NS>=3	310	381	0.81
27	Photon 2GeV+MBD NS>=4	82	91	0.90
28	Photon 2GeV	246	309	0.80
29	Photon 3GeV	134	163	0.82
30	Photon 4GeV	584	709	0.82
31	Photon 5GeV	213	254	0.84
all	all	638	778	0.82

Only 1k events were analyzed for each trigger.