Backward Hadronic Calorimeter status

Leszek Kosarzewski

The Ohio State University

ePIC TIC meeting 28.10.2024

Outline

- Status
- Motivation for nHCal
- 3 Vector meson reconstruction in dimuon channel
- 4 Vector meson reconstruction in KK channel
- Diffractive dijets with nHCal
 - Particle distributions in nHCal
- Jets with neutrals
- Veto for dRICH
- 8 Design
- Summary

- A lot of progress since collaboration meetings
- Clearly defined motivation
- Engineering design selected to be a shorter version of LFHCAL modules
- Small but growing DSC: OSU, CTU in Prague, UIUC, help from BNL

Main webpage

https://wiki.bnl.gov/EPIC/index.php?title=Backward_Hcal

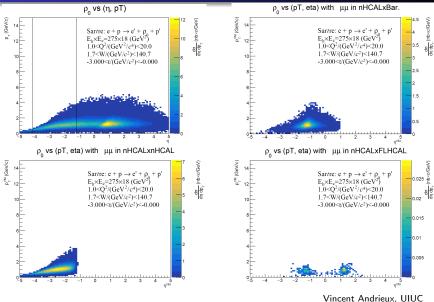
Weekly meetings page (many updates!)

https://indico.bnl.gov/category/549/



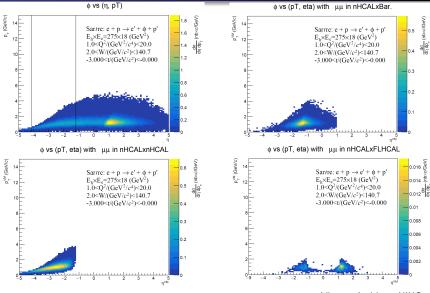
Motivation for nHCal

- Members of H1 recognize that the lack of a backward HCAL hurt several important physics measurements, especially low-x related studies.
 - [NIM A386 (1997) 397-408]
 - [DESY 08-053]
- Measure vector meson production in dimuon channel
 - Orucial physics topic according to Yellow Report and EIC White Paper
 - Promised to be delivered by ePIC
 - [Nuclear Physics A 1026 (2022) 122447]
 - [BNL-98815-2012-JA; JLÀB-PHY-12-1652]
 - Access to low-pT VM's
 - Increase acceptance
 - Double statistics
 - Muons not affected by bremsstrahlung
 - **6** Measure all VMs via dimuon final states (eg. $\phi \to KK \to \mu\mu$)
- Measure diffractive dijets
- Oistinguish charged jets from those including neutrals
- Improve scattered electron ID
- Veto for dRICH


Vector meson reconstruction in dimuon channel

Vector meson studies

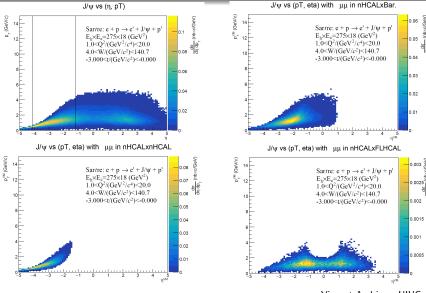
- Important for high y or low- p_T vector mesons depends on kinematics
- Increases acceptance
- Need projected MIP tracks and MIP signals in backward HCal and EMCal
 - \bullet $\;\mu/\pi$ distinction important, position resolution...
- Simulations done by UIUC with event generators:
 - Simulated exclusive, diffractive $\rho_0, \phi, J/\psi, \rightarrow \mu\mu$ production in DIS regime with Sartre
 - Skipped PYTHIA8 for now, because of limitations of hard diffraction implementation
 - For ρ_0 and ϕ KK or even $\pi\pi$ decays may be more relevant than $\mu\mu$ due to low branching ratio
 - Performance estimates underway with full ePIC simulation (needed for TDR)


ρ_0 distributions with Sartre

ullet Branching ratio $ho_0
ightarrow \mu \mu$ not included

nHCal can extend the rapidity range, better access to low-x physics

ϕ distributions with Sartre

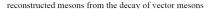


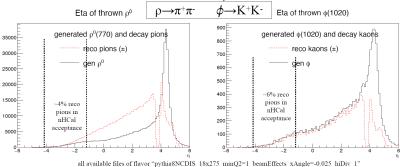
Vincent Andrieux, UIUC

ullet Branching ratio $\phi o \mu \mu$ not included

nHCal can extend the rapidity range, better access to low-x physics

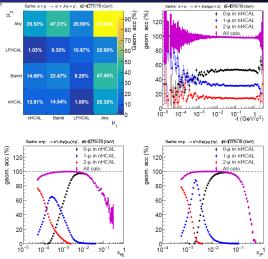
J/ψ distributions with Sartre


Vincent Andrieux, UIUC

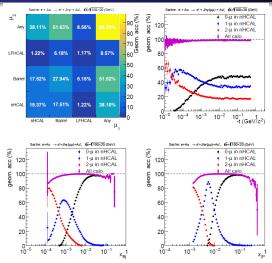

 \bullet Branching ratio $J/\psi \to \mu\mu$ not included

• nHCal is important for J/ψ study, what about Υ ?

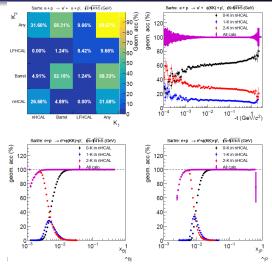
pythia8NCDIS_18x275_minQ2=1 large sample



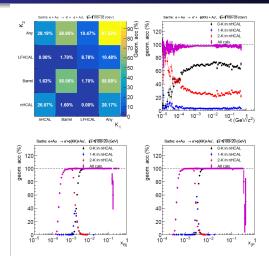
Caroline Riedl, UIUC


- $\bullet\,\sim 4-6\%$ of mesons from VM decay in nHCal acceptance
- centrally generated PYTHIA8 with full simulation of the ePIC detector and tracks reconstructed
- studied decays: $\rho_0(770) \rightarrow \pi^+\pi^-$, $\phi(1020) \rightarrow K^+K^-$

 $J/\psi \rightarrow \mu\mu$, e + p, $18 \times 275 \text{GeV}$

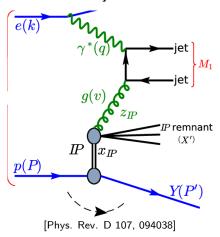

Vincent Andrieux, UIUC

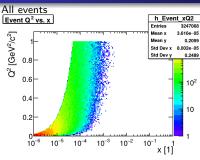
- nHCal crucial to measurements below $x = 10^{-3}$
- Other detectors limited to $x = 10^{-3}$
- Necessary for one of the physics topics in EIC YR and promised by ePIC

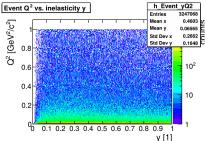

Vincent Andrieux, UIUC

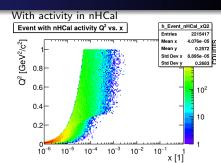
- nHCal crucial to measurements below $x = 10^{-2}$ in e + A
- Other detectors limited to $x = 10^{-2}$ in e + A
- Necessary for one of the physics topics in EIC YR and promised by ePIC

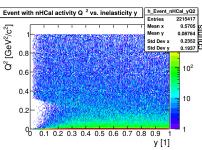
Vincent Andrieux, UIUC


- ullet nHCal crucial to measurements below $x=10^{-2}$
- Other detectors limited to $x = 10^{-2}$
- Necessary for one of the physics topics in EIC YR and promised by ePIC

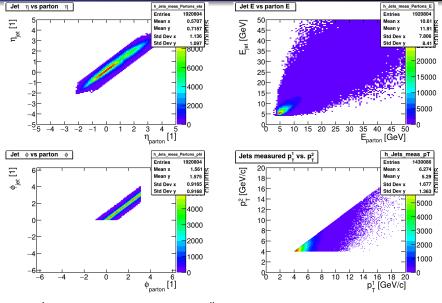

Vincent Andrieux, UIUC

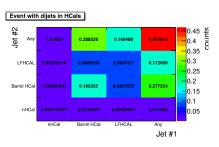

- nHCal crucial to measurements below $x = 10^{-2}$ in e + A
- Other detectors limited to $x = 10^{-2}$ in e + A
- Necessary for one of the physics topics in EIC YR and promised by ePIC

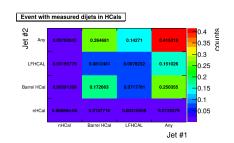

Diffractive dijets with nHCal



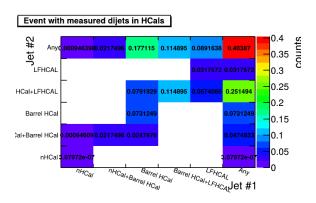
Event kinematics



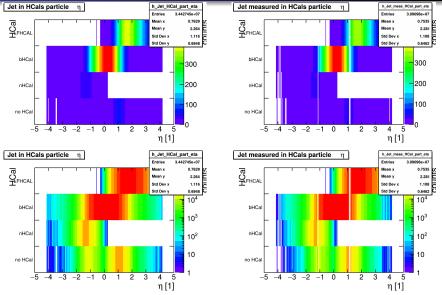

- $\bullet\,\sim63\%$ events with activity in nHCal
- nHCal crucial for low-x measurements coverage


- Final state particles in pure PYTHIA full ePIC simulation study underway
- Beam particles excluded!
- \bullet Clustered charged particles in trackers ($-3.61<\eta<3.44)$ and neutrals in HCals to obtaine "measured" jets
- ullet Anti- k_T algorithm seems to work well, IR and collinear safe
 - $d_{ij} = \min(\frac{1}{\rho_{Ti}^2}, \frac{1}{\rho_{Tj}^2}) \frac{\Delta R_{ij}^2}{R^2}$ • $d_{iB} = \frac{1}{\rho_{Ti}^2}$
- R = 1
- Jet $p_T > 4 \text{ GeV}$
- Sorted jets vs. p_T

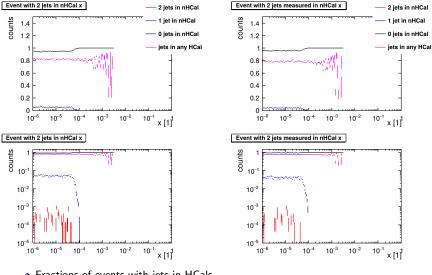
Jet clustering



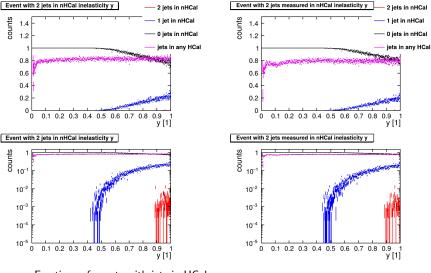
- Jets seem to reconstruct partons well
- Reconstructed quantities correlated with the parton

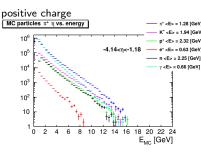


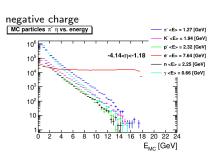
- Fractions of events with jets in HCals
- Relative to events with 2 partons in ePIC acceptance
- All particles (left) and "measured" in trackers+HCals (right)
- \bullet 1.8 and 1.4 percent of all and measured jets with 1 jet in nHCal
 - But selects specific kinematics!



- Fractions of events fully contained/particles shared in HCals
- Relative to events with 2 partons in ePIC acceptance
- 4.8 of jets share particles between nHCal and Barrel
 - Need nHCal to fully reconstruct those

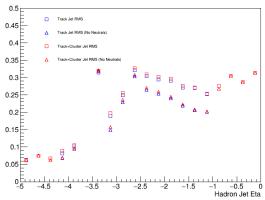

Jets in HCals vs. constituent η


- ullet η distributions for constituents of jets in HCals
- Illustrates sharing of particles between HCals



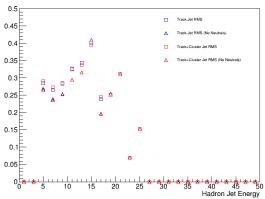
- Fractions of events with jets in HCals
- nHCal selects events with high y (inelasticity) and low $x \sim 10^{-4}$

- Fractions of events with jets in HCals
- nHCal selects events with high y (inelasticity) and low x

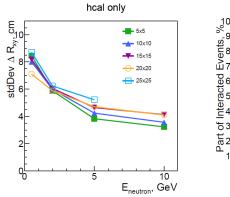


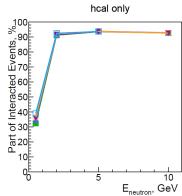
- ullet Total energy distributions vs. η
 - Average neutron energy similar to inclusive events
- Kinetic energy is measured in nHCal

Jets with neutrals

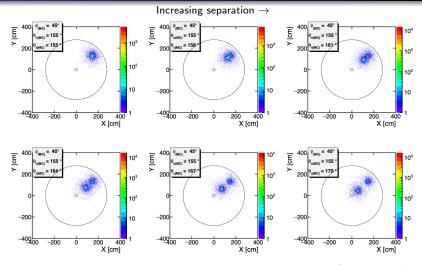

Jet Energy Resolution Comparison

- Idea: use nHCal to separate charged only jets and those with neutrals
- WARNING: affected by the wide clustering bug, so may improve
- ullet RMS of the full distribution of jet $(E_{reco}-E_{generated})/E_{generated}$ vs. η_{jet}
- \bullet Isolating neutral (20 25% of all jets) and charged jets already improves the resolution by $\sim 20\%$
- Unavoidable deterioration of resolution when adding clusters
 - Tracking offers better resolution in this kinematic range
 - However hadron measurements still needed for neutrals!
 L. Kosarzewski
 OSU


Brian Page, BNL


Jet Energy Resolution Comparison

- WARNING: affected by the wide clustering bug, so may improve
- RMS of the full distribution of jet $(E_{reco} E_{generated})/E_{generated}$ vs. $E_{generated}$
- Mostly smooth dependence, increases with energy


Alexandr Prozorov, CTU

- Shoot single neutrons and compare ideal projections to RECO clusters
- Vary energy and tile size to obtain scaling
- ullet Even large tiles up to 25 cm seem to be OK
- Need track projections and cluster matching in realistic DIS events next steps

2-particle resolution study

Subhadip Pal, CTU

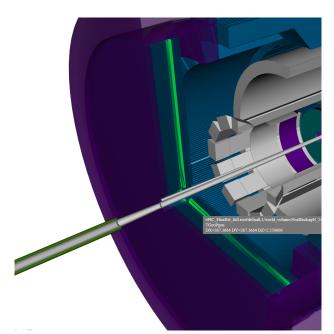
- n and π clusters are well separated down to $30-40\mathrm{cm}\approx2\lambda_0$
- Detailed checks at closer distance in progress
- Pion clusters steal energy from overlapping neutron showers
- At low energy pions shower much more than neutrons


Veto for dRICH

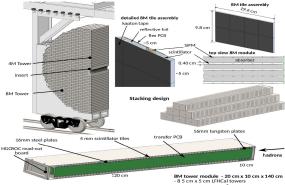
- . RHIC is a living beast, you never know what it will throw at you!
- Run24 beam background is quite high due to multiple reasons
- Machine attempts to reduce background yielded modest improvements
- · And at the end it is up to experiments to find efficient solutions to clean it up!

- Upstream background polluted some FCS trigger by ~ 30% in Run24.
- EPD has enough resolution to apply timing veto cut to clean it up
- In ePIC. nHCal will help to shield dRICH from such events.
- + Timing information from both nHCla and forward HCal similar to EPDE/EPDW

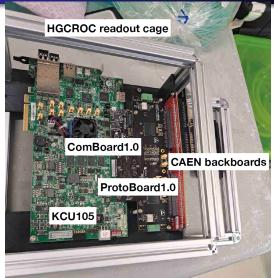
Questions is will it be good to have something similar to EPD/BBC in ePIC? It is much simpler detectors than calorimeters. May be re-used (EPD) from STAR and sPHENIX? Space?



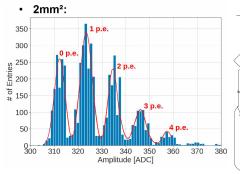
See Oleg's presentation:

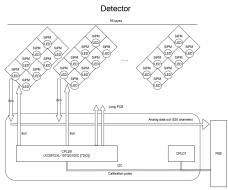

https://indico.bnl.gov/event/20727/contributions/94377/

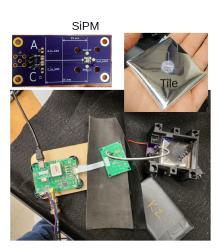
- We are working on realistic studies, but they require:
 - realistic background, full material budget, multiple detector reconstruction, timing info, etc.
- Potential to reject 30% or more background is worthwhile to investigate


Design

Design - backward HCal (nHCal)

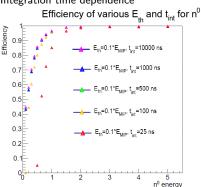


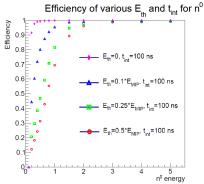

- Sampling calorimeter with 10 alternating layers, $2.4\lambda^0$ (red):
 - ullet non-magnetic steel 4 ${
 m cm}$
 - plastic scintillator 4 mm to be adjusted
- Light collection by SiPM:
 - Candidate (to verify): S14160-1315PS https://www.hamamatsu.com/eu/en/product/optical-sensors/mppc/mppc_mppc-array/S14160-1315PS.html
- Electronics to follow solutions of other calorimetry systems HGCROCv3
- FEEs placed in front of nHCal
 Use similar module structure as LFHCAL: 20 cm × 10 cm × 45 cm
- \bullet This determines max size of tiles: $10~\mathrm{cm}\times10~\mathrm{cm}$ (can use smaller close to the beam)
 - Determined during meeting with project engineers: https://indico.bnl.gov/event/25021/


- FEE: HGCROCv3 78 channels (15 bit equivalent from 10 bit ADC and 12 bit TOT via TDC)
 - Design by Norbert Novitzky (LFHCAL group, ORNL) needs just connection topology and number of channels
- 2352 channels per layer (independent readout gives total of 10×2352)

Calibration system with LEDs

- 1 LED per channel operated via I^2C
- Use single photon spectra to calibrate the response
- Can simulate any pattern: realistic showers etc.
- Check for cross-talk and light leakage
- Design by Norbert Novitzky (LFHCAL group, ORNL) need channel topology

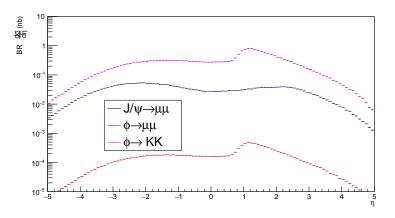


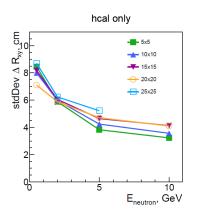

- Ongoing tests of tiles
- Received equipment and help from ORNL group, thanks!
- Plan to order more tiles for testing in contact with Oleg Eyser

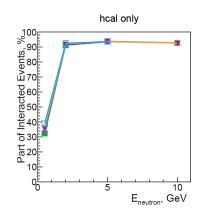
Neutron detection efficiency

Integration time dependence

Threshold dependence

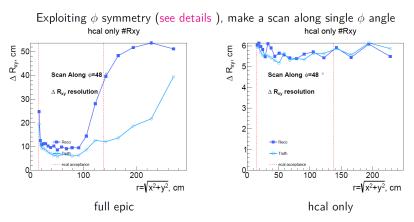

Sam Corey, OSU

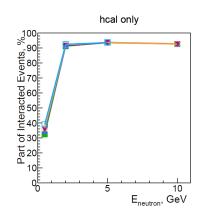

- Efficiency of requiring a hit with a sum of hit contributions energy integrated up to t_{int} and passing a threshold E_{th} , $t_0=0$
- Checked with simulation only no digitization
- \bullet E_{MIP} is $0.75~{
 m MeV}$ per layer
- E_{th} has the biggest impact
- \bullet 100 ns is good enough, but lower energy neutrons may need longer times
- ullet 60% efficiency for $E=300~{
 m MeV}$ neutrons $E_{th}=0.1 imes E_{MIP}=75~{
 m keV}$ and $100~{
 m ns}$


Conclusions

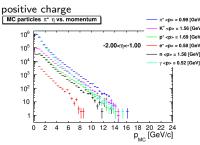
- Backward HCAL is crucial for delivering promised Physics
- Many low-x physics topics through diffractive events (VMs, dijets, etc.) require nHCAL and/or greatly benefit over other channels
- Other benefits are being actively studied (scattered electron ID, dRICH veto, etc.)
- H1 collaboration recognizes that lack of a backward HCAL limited physics output on key topics
- Physics requirements are being used to determine the baseline design requirements for the nHCAL
 - ullet Max size of tile: $10~\mathrm{cm} imes 10~\mathrm{cm}$ (can use smaller close to the beam)
- Last steps: full ePIC simulation of the studied processes

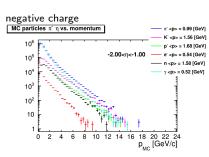
BACKUP

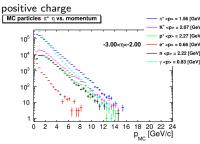



- Shoot single neutrons and compare ideal projections to RECO clusters
- Vary energy and tile size to obtain scaling
- \bullet Even large tiles up to 25 $\rm cm$ seem to be OK
- Need track projections and cluster matching in realistic DIS events next steps

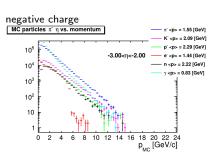
Alexandr Prozorov, CTU

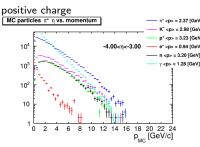

• Barrel materials in front deteriorate the position resolution due to scattering

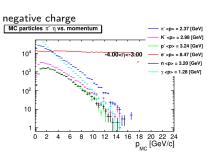



- Shoot single neutrons and compare ideal projections to RECO clusters
- Vary energy and tile size to obtain scaling
- \bullet Even large tiles up to 25 $\rm cm$ seem to be OK
- Need track projections and cluster matching in realistic DIS events next steps

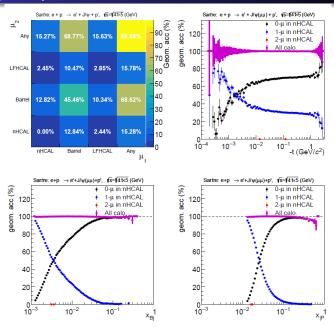
Particle distributions in nHCal




• Total energy distributions vs. η

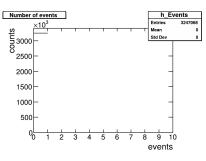


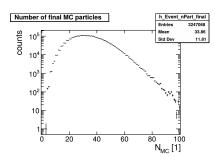
• Total energy distributions vs. η



 \bullet Total energy distributions vs. η

$J/\psi \rightarrow \mu\mu$, e + p, $5 \times 41 \text{GeV}$

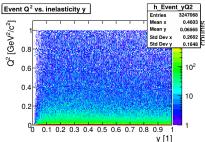

THILL

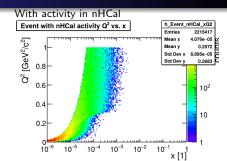

Diffractive dijet - simulation setup

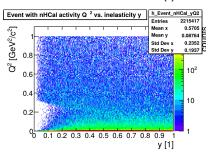
- Simulation setup for diffractive dijets
- PYTHIA version 8.311 simulation from EIC container:
 - $18 \times 275 \text{ GeV } e + p \text{ collisions}, 0 < Q^2 < 1 \text{ GeV}^2$
 - 6M events
- Run at Ohio Supercomputing Center (OSC) to use local computing resources

Listing: Simulation settings

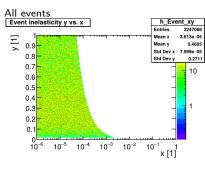

```
pythia8->ReadString("Beams:frameType=2");
pythia8->ReadString("Beams:idA=2212");
pvthia8->ReadString("Beams:idB=11");
pvthia8->ReadString("275."):
pythia8->ReadString("18.");
 //according to main342 for H1 dijets
pythia8->ReadString("PDF:lepton2gamma = on"); // Allow for photon-from lepton
pythia8->ReadString("Photon:ProcessType = 0"); // Allow all photon processes
pythia8->ReadString("Photon:Q2max = 1."); // Maximal Q2
pythia8->ReadString("HardQCD:all = on"); // All dijet MEs
pythia8->ReadString("PhotonParton:all = on"); // All dijet MEs with photons
pythia8->ReadString("PhaseSpace:pThatMin = 4."); // Minimal pT cut
pvthia8->ReadString("MultipartonInteractions:pTORef = 3."); // Tuned en value
// Setup of diffractive framework.
pvthia8->ReadString("Diffraction:doHard = on");
pythia8->ReadString("Diffraction:sampleType = 1"); // 'PDF' sample
pythia8->ReadString("Diffraction:hardDiffSide = 2"); // Diff. on photon side
pythia8->ReadString("SigmaDiffractive:PomFlux = 7"); // H1 Fit B L0
pvthia8->ReadString("PDF:PomSet = 6"): // H1 Fit B LO
```

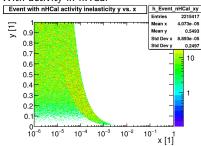




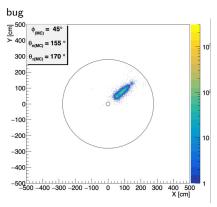

- First look at diffractive dijet events
- 33 final state particles on average
- Small amount of energy contained in diffractive dijets, rest mostly going forward

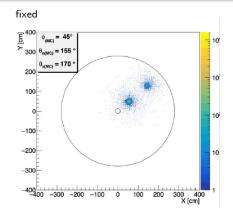
Event kinematics





- $\bullet\,\sim$ 63% events with activity in nHCal
- nHCal crucial for low-x measurements coverage




With activity in nHCal

- $\bullet~\sim63\%$ events with activity in nHCal
- nHCal crucial for low-x measurements coverage

Hit merger bug

- Used 10× larger reco hit positions
- ullet Caused clusters to be merged over 10 imes larger distance
- Fixed with help of Wouter https://github.com/eic/EICrecon/pull/1598
- Prevented us from getting reasonable results for 2-particle studies
- Affects also LFHCAL
- Possibly affected neutral jet study results can improve!

Acceptance check

- Front geometry limit: $-4.03 < \eta < -1.18$
- ullet Back geometry limit: $-4.14 < \eta < -1.27$
- Clusters: $-3.95 < \eta < -1.25$
- MC particles showering in nHCal(with hits): $-4.16 < \eta < -1.16$