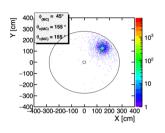
Two-Particle Position Resolution Study from Backward HCal

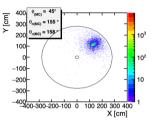
Leszek Kosarzewski, Alexandr Prozorov, Subhadip Pal

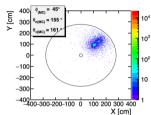
ePIC nHCal-DSC meeting - October 25, 2024

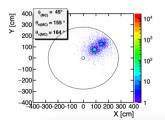
Setup

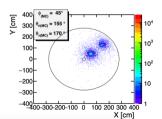
<u>Objective</u>: Use clusters to distinguish between neutron/pion shower reconstruction.


 $(1 n + 1 \pi^{-}) / \text{ event. } ---- \underline{Standalone \ ddsim}$ $\phi = 45^{\circ}$

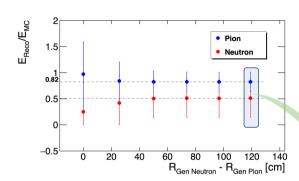

- $\theta_n = 155^{\circ} (\eta = -1.51) ---- fixed$
- $\theta_{\pi} = 155^{\circ}$ ($\eta = -1.51$), 158° ($\eta = -1.64$), 161° ($\eta = -1.79$), 164° ($\eta = -1.96$), 167° ($\eta = -2.17$), 170° ($\eta = -2.44$)


- Only Backward HCal was taken into account [not the whole ePIC geometry – scattering effects neglected]
- $-4.14 < \eta < -1.18$
- Alternating Steel and Scintilator slices
- 10 cm. x 10 cm. Polystyrene tiles


Cluster Positions (xy coordinates)



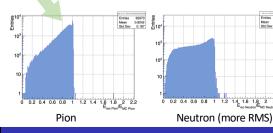
Cluster (x,y) are shown along with simulated angular coordinates


$$p = 1 \text{ GeV/c}$$

[neutron showers in outer region; pion showers in inner region]

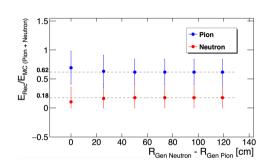
Distributions are becoming more distinguishable as $(\theta_{\pi} - \theta_{\text{n}})$ increases...

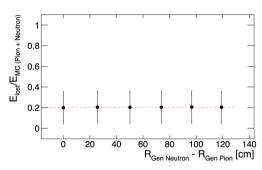
Cluster Reconstruction Efficiency


Individual Particle Energy Reconstruction Efficiency

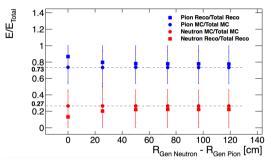
Decreases for neutron as the gap decreases. Some part being hijacked by pions. *E_{MC}≠ E_{gen}

E_{MC} is the Energy deposited during Simulation by the particle


$$E_{Reco} = \sum E_{cluster}$$

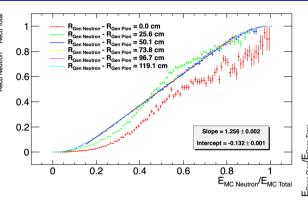

*lower limit of errors for neutron have been truncated to 0 when exceeded.

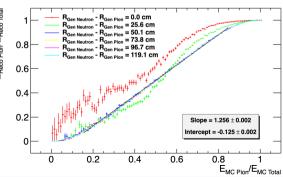
Cluster Reconstruction

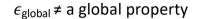

$$E_{MC(Pion+Neutron)} = E_{Rec(Pion+Neutron)} + E_{lost}$$

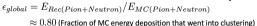
$$\epsilon_{global} = E_{Rec(Pion+Neutron)} / E_{MC(Pion+Neutron)}$$

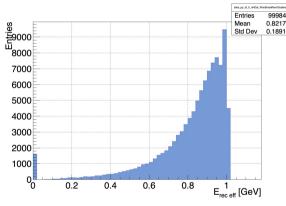
 ≈ 0.80 (Fraction of MC energy deposition that went into clustering)


Energy transfer while clustering

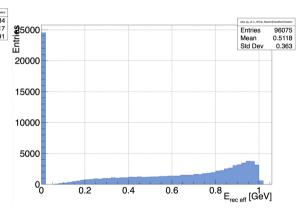

Cluster Reconstruction

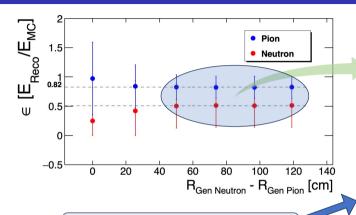

At a seperation of 25.6 cm [see the Green graphs], Neutron(Pion) overpowers the other in clustering when MC energy deposition is higher (E_{MC particle} / E_{MC total} > 0.5).


Linear correlation between $E_{Reco\ particle}/E_{Reco\ total}$ and $E_{MC\ particle}/E_{MC\ total}$ when well separated



Update – from single particle simulation





$$\epsilon_n = E_{Reco}^n / E_{MC}^n$$

Update –

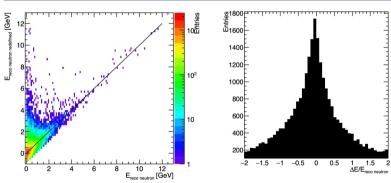
Similar values as the single particle simulations.

Since, no energy hijacking is involved here.

 E_π can be obtained from tracking and PID

$$E_{n}^{cluster} = E_{total}^{cluster} - \epsilon_{\pi single} E_{\pi}$$

$$E_{\pi}=E_{\pi}^{MC}$$
 when corrected with sampling fraction


< $E_{cluster}/p$ > \approx 0.82/1.0 For pions $\epsilon_{\pi single} =$ 0.82 \pm 0.18 at 1 GeV

$R_{gen\ Neutron} - R_{gen\ Pion} = 119.11$ cm

$$E_n^{cluster} = E_{total}^{cluster} - \epsilon_{\pi single} E_{\pi}$$
 ; when, R_{cluster Neutron} - R_{cluster Pion} < 50 cm.

$$E_n^{cluster} = E_{total}^{cluster} - E_\pi^{cluster}$$
 ; when, R $_{
m cluster \, Neutron}$ - R $_{
m cluster \, Pion}$ >= 50 cm.

Study energy dependence of $\epsilon_{\pi single}$ and sampling fraction of pion. Replicate this for full geometry.