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Measuring quantum interference in the off-shell Higgs to flour leptons process
with Machine Learning

Aishik Ghosh
Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

Abstract — The traditional machine learning approach to optimize a particle physics measurement breaks down
in the presence of quantum inference between the signal and background processes. A recently developed family of
physics-aware machine learning techniques that rely on the extraction of additional information from the particle
physics simulator to train the neural network could be adapted to a signal strength measurement problem. The
networks are trained to directly learn the likelihood or likelihood ratio between the test hypothesis and null
hypothesis values of the theory parameters being measured. We apply this idea to a signal strength measurement
in the off-shell Higgs to four leptons analysis for the Vector Boson Fusion production mode from simulations of
the high energy proton-proton collisions at the Large Hadron Collider. Promising initial results indicate that a
model trained on simulated data at different values of the signal strength outperforms traditional approaches in
the presence of quantum interference.

1 Introduction

(a) Signal: Higgs from
Vector Boson Fusion

(b) Background: Vector
Boson Scattering

Figure 1: Feynman Diagrams of the processes under
study, (a) signal Higgs diagram, (b) interfering back-
ground diagram

The Heisenberg uncertainty principle of quantum
mechanics (�E�t � ~

2
) allows particles to become “vir-

tual”, with a mass going far away from the one de-
scribed by special relativity’s mass-energy equivalence
formula E2 � |~p|2c2 = m2

0
c4 (where the energy E is

given in terms of the rest mass m0 and momentum ~p
of the particle and c is the speed of light in vacuum).
They and are refereed to as “off-shell” particles. Quan-
tum mechanics also prescribes that given an initial and
final state, all possible intermediate states can and will
occur, and they may interfere with one another.

A study of the off-shell Higgs boson decaying to two
Z bosons that decay to four leptons (henceforth referred
to as “offshell h4l”), such the 2018 study [2] in the AT-
LAS Collaboration [1] is one of the most interesting
studies in high energy particle physics because it allows
to break certain degeneracies between the Higgs cou-
plings, and constrain the Higgs width (under certain
model dependent assumptions) that cannot be disen-
tangled by an on-shell measurement alone. An update
to the previous ATLAS study using the entire Run2

data will have develop innovative methodology to deal
with quantum interference between the Higgs Feynman
diagram (referred to as “signal”) and other standard
model processes (referred to as “background”). While
the previous round used simple cuts to define the region
of interest, we investigate a recently developed family of
physics-aware machine learning techniques to improve
the sensitivity of such an analysis. The two main dia-
grams studied here are shown in Figure 1. Other signal
and background processes will be included in future
studies. The objective of the analysis is to measure the
“signal strength”, µ, of the signal, which is a proxy for
measuring how strongly the Higgs interacts with other
fields. Interestingly, the usual notion that the signal
strength corresponds to the ratio of the observed in
data to the expected in Monte Carlo simulation signal
yield breaks down in the presence of quantum interfer-
ence.

This study is performed with data simulated with
MadGraph5_aMC [3], Pythia 8 [4] and Delphes 3 [5].

2 Machine Learning in a signal
strength measurement

Traditionally, in analyses without quantum interfer-
ence, one can train a machine learning classifier (such
as a Boosted Decision Tree) to separate the signal and
background samples (referred to as “events”) that are
simulated separately, and under the assumption that
it is an optimal classifier, due to the Neyman-Pearson
lemma [6], one can get the likelihood ratio [7] between a
test hypothesis and the null hypothesis from the output
of the classifier. The output of the classifier can be used
for a fit to measure the signal strength, µ, optimally.
In the presence of quantum interference, this strategy
is no longer optimal. Figure 2 shows how a physics
variable (the invariant mass of the four leptons) that is
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ATLAS-CONF-2024-015
28th October 2024

An implementation of Neural Simulation-Based
Inference for Parameter Estimation in ATLAS

The ATLAS Collaboration

Neural Simulation-Based Inference (NSBI) is a powerful class of machine learning (ML)-based
methods for statistical inference that naturally handles high-dimensional parameter estimation
without the need to bin data into low-dimensional summary histograms. Such methods are
promising for a range of measurements, including at the Large Hadron Collider (LHC), where
no single observable may be optimal to scan over the entire theoretical phase space under
consideration, or where binning data into histograms could result in a loss of sensitivity.
This work develops an NSBI framework for statistical inference, using neural networks to
estimate probability density ratios, which enables the application of NSBI to a full-scale LHC
analysis. It incorporates a large number of systematic uncertainties, quantifies the uncertainty
coming from finite training statistics, develops a method to construct confidence intervals,
and demonstrates a series of intermediate diagnostic checks that can be performed to validate
the robustness of the method. As an example, the power and feasibility of the method are
demonstrated on simulated data for a simplified version of an o!-shell Higgs boson couplings
measurement in the four-leptons final states. This NSBI framework is an extension of the
standard statistical framework used by LHC experiments and can benefit a large number of
physics analyses.

© 2024 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
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© 2024 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

ATLAS CONF Note

ATLAS-CONF-2024-016
October 31, 2024

Measurement of o!-shell Higgs boson production in
the 𝜴→ ↑ 𝜶𝜶 ↑ 4𝜷 decay channel using a neural

simulation-based inference technique with the
ATLAS detector at

↓
𝜸 = 13 TeV

The ATLAS Collaboration

A measurement of o!-shell Higgs boson production in the 𝐿
→
↑ 𝑀𝑀 ↑ 4𝑁 decay channel

is presented. The measurement uses the 140 fb↓1 of integrated luminosity collected by the
ATLAS detector during the Run 2 proton-proton collisions of the Large Hadron Collider at
↔
𝑂 = 13 TeV and supersedes our previous result in this decay channel using the same dataset.

The data analysis is performed using a neural simulation based-inference method, which builds
per-event likelihood ratios using neural networks. The observed (expected) o!-shell Higgs
boson production signal strength in the 𝑀𝑀 ↑ 4𝑁 decay channel is 0.87+0.75

↓0.54 (1.00+1.04
↓0.95) at

68% CL. The previous result was not able to achieve expected sensitivity to quote a two-sided
interval at this CL. The expected plus-side uncertainty is reduced by 10%. The evidence for
o!-shell Higgs boson production has an observed (expected) significance of 2.5𝑃 (1.3𝑃) using
the 𝑀𝑀 ↑ 4𝑁 decay channel only. The expected significance score is 2.6 times that of our
previous result using the same dataset. When combined with our most recent measurement in
𝑀𝑀 ↑ 2𝑁2𝑄 decay channel, the evidence for o!-shell Higgs boson production has an observed
(expected) significance of 3.7𝑃 (2.4𝑃). The o!-shell measurements are combined with the
measurement of on-shell Higgs boson production to obtain constraints on the Higgs boson
total width. The observed (expected) value of the Higgs boson width is 4.3+2.7

↓1.9 (4.1+3.5
↓3.4) MeV

at 68% CL.

© 2024 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
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Abstract: Neutron stars provide a unique opportunity to study strongly interacting matter
under extreme density conditions. The intricacies of matter inside neutron stars and their
equation of state are not directly visible, but determine bulk properties, such as mass and
radius, which a!ect the star’s thermal X-ray emissions. However, the telescope spectra of
these emissions are also a!ected by the stellar distance, hydrogen column, and e!ective
surface temperature, which are not always well-constrained. Uncertainties on these nuisance
parameters must be accounted for when making a robust estimation of the equation of state.
In this study, we develop a novel methodology that, for the first time, can infer the full
posterior distribution of both the equation of state and nuisance parameters directly from
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Smash particles at Large Hadron Collider

https://www.pinterest.es/pin/616148792741667669/
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(Frequentist) Hypothesis tests

p(data |H1) p(data |Href )

ℒ(H1 |data) = p(data |H1)
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“Width” of the particle

Undiscovered massive particles

H ΓH

A measurement of the Higgs width

• Enables the probe of a wide variety of new massive 
particles, other new physics 

• Central topic for future colliders
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2.3. OFF-SHELL HIGGS MEASUREMENT IN THE FOUR LEPTON FINAL STATE

FIG. 5: Overall picture at 13 TeV, (colour online).

FIG. 6: Higgs related contributions in the high m4� region, (colour online).
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(a)

Figure 2.9 – Di�erential cross sections as a function of the invariant mass of the four leptons for
various processes in the four lepton channel, gg æ H

ú
æ ZZ signal (red line), gg æ ZZ background

(blue line), full process gg æ
!
H

ú
æ

"
ZZ (pink line), and the dominant background qq̄ æ ZZ. [29]

processes do so through their low-mass o�-shell tails (see the Feynman diagrams for the main
contributors to the ZZ production in Figure 2.8). Near twice the Z mass, o�-shell production of
the SM Higgs boson has a substantial cross-section at the LHC [31, 32] (see Figure 2.9) because
although the Higgs boson is o�-shell, the intermediate Z bosons in the decay process can go
on-shell. The threshold e�ect can be seen again near twice the top mass, corresponding to the
top quarks in the production process going on-shell. This provides a unique opportunity to
study the Higgs boson at higher energy scales. The destructive interference between certain SM
signal and background processes further enhance the possibility to measure the presence of the
signal.

The high mass o�-shell study has received considerable attention because it is sensitive to various
kinds of New Physics that might change the couplings of the Higgs to other fundamental particles
in the high-mass region or change the ZZ background yield [33–35], and the measurement has
interesting interpretations in the EFT framework [36]. Non-SM operators studied by [37] lead to
enhanced yields in the o�-shell regime coming from gg æ X æ ZZ

ú
æ 4¸ where X indicates New

Physics. The measurements can also help break degeneracies and compliment ttH measurements
to constrain EFT parameters [38].

It is clear that at such high energies, the infinite top mass approximation often used to simplify
the coupling of the Higgs to gluons breaks down, therefore it is essential to take finite top mass
e�ects into account. New Physics could change the couplings to the top as well as introduce
new heavy coloured states running in the loop and these e�ects might remain invisible for the
on-shell Higgs [39]. The presence of any additional agent of symmetry breaking (such as a heavy
neutral Higgs) is likely to a�ect this region of the distribution that is sensitive to interference
e�ects. Finally, the o�-shell measurement would help probe the total width of the Higgs boson,
and the interest for doing so have been described in the previous section.
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Quantum interference:

Campbell et al: arXiv:1311.3589

https://hal.science/hal-02971995v3/
https://arxiv.org/abs/1311.3589
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2-D space

• Clearly separable in 2-D 

• No 1-D summary statistic may contain all the 
information needed to optimally test all theory 
hypotheses! 

• Valuable to have high-dimensional view of 
data
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No single observable captures all information in Higgs width study

hal-02971995v3 (p172): Aishik Ghosh, David Rousseau

Signal-background-inference simulations: MG + Pythia

https://hal.science/hal-02971995v3/
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No single observable captures all information in Higgs width study

Optimal observable now changes as a function of μ: Cannot collapse problem to 1 dimension

Δηjj

μ=4 indistinguishable from μ=0 
but other observables can break 
the degeneracy

hal-02971995v3 (p172): Aishik Ghosh, David Rousseau

Can you spot the green plot?

m4l
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Signal-background-inference simulations: MG + Pythia
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The normalisations of the ,/ , / + jets and non-resonant-✓✓ backgrounds are also obtained from
the simultaneous fit, using the dedicated control regions described in Section 6. Similarly to the
@@̄ ! // background, events from the ,/ process are treated separately for each jet multiplicity. Five
additional free parameters, `3✓ , `1 9

3✓ , `
2 9
3✓ , `/ 9 , and `4`, are therefore introduced in the likelihood model

specifically for the 2✓2a channel and for its combination with the 4✓ channel.

The likelihood function for the combination of both channels is built as a product of the likelihoods of
the individual channels. Theoretical and experimental uncertainties with common sources are treated
as correlated between the two channels. The NLO EW uncertainty is uncorrelated between the two
channels, due to the different schemes used to derive the uncertainties. The hypothesis of systematic
uncertainty correlation between the 4✓ and 2✓2a channels is tested for the dominant sources of uncertainties,
including the PS uncertainties that use models with different complexity in the two channels, and the NLO
EW uncertainty. The difference in the result when using different correlation hypotheses is found to be
negligible.

The <4✓ distribution for the 4✓ channel and the <//

T distribution for the 2✓2a channel are shown in Figure 5
after the full fit to data with `off-shell = 1. The total systematic uncertainty from the sources described in
Section 7 are shown in the figure. The distributions of the NN observables used in the 4✓ channel are
shown in Figure 3.
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Figure 5: Comparisons between data and the SM prediction for the (a) <4✓ and (b) <//

T distributions in the inclusive
off-shell signal regions in the // ! 4✓ and // ! 2✓2a channels, respectively. The scenario with the off-shell
signal strength equal to one is considered in the fit. The hatched area represents the total systematic uncertainty. The
last bin in both figures contains the overflow.

The expected numbers of events in the SRs after the maximum-likelihood fit to the data performed in
all SRs and CRs, together with the corresponding observed yields, are shown in Tables 2 and 3 for the
// ! 4✓ and // ! 2✓2a channels, respectively. The fitted background normalisation factors together
with their total uncertainties are summarized in Table 4.

To obtain the results for a given parameter of interest, profile likelihood ratios (denoted by _) are computed
for different values of each parameter. The �2 ln_ curve as a function of `off-shell is presented in Figure 6(a).
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The expected numbers of events in the SRs after the maximum-likelihood fit to the data performed in
all SRs and CRs, together with the corresponding observed yields, are shown in Tables 2 and 3 for the
// ! 4✓ and // ! 2✓2a channels, respectively. The fitted background normalisation factors together
with their total uncertainties are summarized in Table 4.

To obtain the results for a given parameter of interest, profile likelihood ratios (denoted by _) are computed
for different values of each parameter. The �2 ln_ curve as a function of `off-shell is presented in Figure 6(a).
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The expected numbers of events in the SRs after the maximum-likelihood fit to the data performed in
all SRs and CRs, together with the corresponding observed yields, are shown in Tables 2 and 3 for the
// ! 4✓ and // ! 2✓2a channels, respectively. The fitted background normalisation factors together
with their total uncertainties are summarized in Table 4.

To obtain the results for a given parameter of interest, profile likelihood ratios (denoted by _) are computed
for different values of each parameter. The �2 ln_ curve as a function of `off-shell is presented in Figure 6(a).
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EW uncertainty. The difference in the result when using different correlation hypotheses is found to be
negligible.

The <4✓ distribution for the 4✓ channel and the <//

T distribution for the 2✓2a channel are shown in Figure 5
after the full fit to data with `off-shell = 1. The total systematic uncertainty from the sources described in
Section 7 are shown in the figure. The distributions of the NN observables used in the 4✓ channel are
shown in Figure 3.
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Figure 5: Comparisons between data and the SM prediction for the (a) <4✓ and (b) <//

T distributions in the inclusive
off-shell signal regions in the // ! 4✓ and // ! 2✓2a channels, respectively. The scenario with the off-shell
signal strength equal to one is considered in the fit. The hatched area represents the total systematic uncertainty. The
last bin in both figures contains the overflow.

The expected numbers of events in the SRs after the maximum-likelihood fit to the data performed in
all SRs and CRs, together with the corresponding observed yields, are shown in Tables 2 and 3 for the
// ! 4✓ and // ! 2✓2a channels, respectively. The fitted background normalisation factors together
with their total uncertainties are summarized in Table 4.

To obtain the results for a given parameter of interest, profile likelihood ratios (denoted by _) are computed
for different values of each parameter. The �2 ln_ curve as a function of `off-shell is presented in Figure 6(a).
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@@̄ ! // background, events from the ,/ process are treated separately for each jet multiplicity. Five
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2 9
3✓ , `/ 9 , and `4`, are therefore introduced in the likelihood model
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The likelihood function for the combination of both channels is built as a product of the likelihoods of
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The expected numbers of events in the SRs after the maximum-likelihood fit to the data performed in
all SRs and CRs, together with the corresponding observed yields, are shown in Tables 2 and 3 for the
// ! 4✓ and // ! 2✓2a channels, respectively. The fitted background normalisation factors together
with their total uncertainties are summarized in Table 4.

To obtain the results for a given parameter of interest, profile likelihood ratios (denoted by _) are computed
for different values of each parameter. The �2 ln_ curve as a function of `off-shell is presented in Figure 6(a).
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Figure 7.16 – Negative log likelihood curves for Asimov datasets generated at µ = 1, µ = 2, µ = 4
with and without using the total cross section (rate) information.
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Open problems to extend to full ATLAS analysis:
• Robustness: Design and validation 
• Systematic Uncertainties: Incorporate them in likelihood (ratio) model 
• Neyman Construction: Throwing toys in a per-event analysis
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ATLAS CONF Note

ATLAS-CONF-2024-015
28th October 2024

An implementation of Neural Simulation-Based
Inference for Parameter Estimation in ATLAS

The ATLAS Collaboration

Neural Simulation-Based Inference (NSBI) is a powerful class of machine learning (ML)-based
methods for statistical inference that naturally handles high-dimensional parameter estimation
without the need to bin data into low-dimensional summary histograms. Such methods are
promising for a range of measurements, including at the Large Hadron Collider (LHC), where
no single observable may be optimal to scan over the entire theoretical phase space under
consideration, or where binning data into histograms could result in a loss of sensitivity.
This work develops an NSBI framework for statistical inference, using neural networks to
estimate probability density ratios, which enables the application of NSBI to a full-scale LHC
analysis. It incorporates a large number of systematic uncertainties, quantifies the uncertainty
coming from finite training statistics, develops a method to construct confidence intervals,
and demonstrates a series of intermediate diagnostic checks that can be performed to validate
the robustness of the method. As an example, the power and feasibility of the method are
demonstrated on simulated data for a simplified version of an o!-shell Higgs boson couplings
measurement in the four-leptons final states. This NSBI framework is an extension of the
standard statistical framework used by LHC experiments and can benefit a large number of
physics analyses.

© 2024 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

Presented at CHEP 2024, Higgs 2024

https://indico.cern.ch/event/1338689/contributions/6015960/
https://indico.cern.ch/event/1391236/
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physics analyses.
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ATLAS CONF Note

ATLAS-CONF-2024-016
October 31, 2024

Measurement of o!-shell Higgs boson production in
the 𝜴→ ↑ 𝜶𝜶 ↑ 4𝜷 decay channel using a neural

simulation-based inference technique with the
ATLAS detector at

↓
𝜸 = 13 TeV

The ATLAS Collaboration

A measurement of o!-shell Higgs boson production in the 𝐿
→
↑ 𝑀𝑀 ↑ 4𝑁 decay channel

is presented. The measurement uses the 140 fb↓1 of integrated luminosity collected by the
ATLAS detector during the Run 2 proton-proton collisions of the Large Hadron Collider at
↔
𝑂 = 13 TeV and supersedes our previous result in this decay channel using the same dataset.

The data analysis is performed using a neural simulation based-inference method, which builds
per-event likelihood ratios using neural networks. The observed (expected) o!-shell Higgs
boson production signal strength in the 𝑀𝑀 ↑ 4𝑁 decay channel is 0.87+0.75

↓0.54 (1.00+1.04
↓0.95) at

68% CL. The previous result was not able to achieve expected sensitivity to quote a two-sided
interval at this CL. The expected plus-side uncertainty is reduced by 10%. The evidence for
o!-shell Higgs boson production has an observed (expected) significance of 2.5𝑃 (1.3𝑃) using
the 𝑀𝑀 ↑ 4𝑁 decay channel only. The expected significance score is 2.6 times that of our
previous result using the same dataset. When combined with our most recent measurement in
𝑀𝑀 ↑ 2𝑁2𝑄 decay channel, the evidence for o!-shell Higgs boson production has an observed
(expected) significance of 3.7𝑃 (2.4𝑃). The o!-shell measurements are combined with the
measurement of on-shell Higgs boson production to obtain constraints on the Higgs boson
total width. The observed (expected) value of the Higgs boson width is 4.3+2.7

↓1.9 (4.1+3.5
↓3.4) MeV

at 68% CL.

© 2024 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

Applied on Run2 data, superseding previous 
ATLAS paper on same data !

Presented at CHEP 2024, Higgs 2024

https://indico.cern.ch/event/1338689/contributions/6015960/
https://indico.cern.ch/event/1391236/
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Open problems to extend to full ATLAS analysis:
• Robustness: Design and validation 
• Systematic Uncertainties: Incorporate them in likelihood (ratio) model 
• Neyman Construction: Throwing toys in a per-event analysis

Next 2 slides gets a bit technical
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observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164

When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coe!cients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength 𝐿), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use di"erent physics processes that give rise to the same final173

state, each with a coe!cient that is some function of the parameter of interest. If the decomposition is into174

𝑀 di"erent components, representing di"erent physics processes,175

𝑁(𝑂𝐿 |𝐿) =
1

𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁 𝑁 𝑁 (𝑂𝐿), (8)

where 𝑁 𝑁 (𝑂𝐿) is the probability density for the event 𝑂𝐿 correspeonding to the process 𝑅 , and 𝑃 𝑁 the inclusive176

rate for that process are defined with 𝐿 at the Standard Model value. The full dependence on 𝐿 can be177

captured using only the coe!cients 𝑄 𝑁 (𝐿) and the total rate 𝑃(𝐿). Such a decomposition is possible for a178

wide range of LHC analyses where the coe!cients 𝑄 𝑁 (𝐿) are known from theory2 [4]. These coe!cients are179

also used together with the inclusive rates (estimated from simulations) for each process (𝑃 𝑁) to determine180

𝑃(𝐿) =
∑

𝑄 𝑁 (𝐿) · 𝑃 𝑁 . Here 𝐿 could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to 𝑁 𝑁 (𝑂𝐿 |𝐿) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186

𝑁(𝑂𝐿 |𝐿)

𝑁ref(𝑂𝐿)
=

1
𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁

𝑁 𝑁 (𝑂𝐿)

𝑁ref(𝑂𝐿)
, (9)

expressed using only a finite number of 𝐿-independent density ratios, 𝑁 𝑁 (𝑂𝐿)/𝑁ref(𝑂𝐿). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

𝑁ref(𝑂𝐿) =
1∑
𝑂
𝑃𝑂

𝑀signals∑
𝑂

𝑃𝑂 𝑁𝑂 (𝑂𝐿), (10)

2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.
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space can guide decisions about neural network architecture optimisation and data pre-processing. Such195

iterative optimisation is essential to achieve a high level of accuracy in likelihood-ratio estimation. Since196

the ensembles are trained on bootstrapped samples, it is natural to use the spread in their predictions to197

quantify the uncertainty due to the limited training data.198

3 Example use case: ggF Off-shell Higgs Production199

The developed NSBI framework is demonstrated using a subset of simulated samples originally generated200

for an off-shell Higgs signal strength measurement in the � ! // ! 4✓ decay channel. The full context201

of the analysis is described in Ref. [7], and only the details relevant for NSBI will be summarised below.202

Only a subset of the physics processes and systematic uncertainties from the original analysis are considered203

for this demonstration.204

When the quantum interference is negligible, a single observable that optimally separates signal from205

background contains all the information necessary to perform optimal hypothesis tests over the full range206

of signal strength values (see Eq. 5). However, this is no longer true when quantum interference cannot be207

ignored, and therefore does not apply to the off-shell Higgs analysis, where there is considerable destructive208

quantum interference between the signal and background processes. In this case, the impact of the signal209

strength ` on the probability model is non-linear, as will be described below, and Ref. [2] proposes the use210

of NSBI to fully account for these non-linear effects.211

The analysis by ATLAS in Ref. [7] included simulated samples from 66 ! � ! // ! 4✓ signal-only212

(S) production, 66 ! // ! 4✓ background-only (B) production, and the combined simulation including213

interference effects 66 ! (�) ! // ! 4✓ (SBI1, where the subscript indicates that ` was set to 1 for214

the simulation). These processes from the gluon-gluon fusion (ggF) production channel will be re-used215

for the demonstrations in this paper. In principle a coupling modifier parameter that scales the signal216

amplitude could be a complex number, which would lead to a phase contributing to the interference term217

in the cross-section computation. This would require the measurement of two independent parameters218

of interest, which can be done with NSBI. In this analysis however, the modifier p` is assumed to be a219

positive real number, and therefore only the inference of one parameter of interest ` is required. The full220

ggF probability model can be expressed as221

?ggF(G |`) =
1

aggF(`)

⇥
(` �

p
`) a( ?S(G) +

p
` aSBI1 ?SBI1 (G) + (1 �

p
`)aB ?B(G)

⇤
, (9)

where aggF(`) = (` �
p
`) a( +

p
` aSBI1 + (1 �

p
`)aB. The contribution from the interference (I) is222

represented using ?I = ?SBI1 � ?B � ?S, and it is the inference effects that introduce the non-linearity in `.223

For simplicity, the ggF subscripts will be suppressed henceforth. The definition for the reference in Eq. 8224

leads to ?ref = ?S for this example, and the search oriented mixture model from Eq. 7 becomes225
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This can be constructed using two ensembles, the first to estimate ?SBI1 (G)/?S(G) and the second226

?B(G)/?S(G). The event section strategy follows to Ref. [7], and uses in addition a multi-variate-analysis-227

based discriminant, similar to the discriminant used in that analysis, to define the signal and control regions.228

The rest of this section will describe input features and architecture for the ensemble of networks trained229

for these tasks, and the systematics model considered in this demonstration.230
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observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164

When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coe!cients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength 𝐿), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use di"erent physics processes that give rise to the same final173

state, each with a coe!cient that is some function of the parameter of interest. If the decomposition is into174

𝑀 di"erent components, representing di"erent physics processes,175

𝑁(𝑂𝐿 |𝐿) =
1

𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁 𝑁 𝑁 (𝑂𝐿), (8)

where 𝑁 𝑁 (𝑂𝐿) is the probability density for the event 𝑂𝐿 correspeonding to the process 𝑅 , and 𝑃 𝑁 the inclusive176

rate for that process are defined with 𝐿 at the Standard Model value. The full dependence on 𝐿 can be177

captured using only the coe!cients 𝑄 𝑁 (𝐿) and the total rate 𝑃(𝐿). Such a decomposition is possible for a178

wide range of LHC analyses where the coe!cients 𝑄 𝑁 (𝐿) are known from theory2 [4]. These coe!cients are179

also used together with the inclusive rates (estimated from simulations) for each process (𝑃 𝑁) to determine180

𝑃(𝐿) =
∑

𝑄 𝑁 (𝐿) · 𝑃 𝑁 . Here 𝐿 could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to 𝑁 𝑁 (𝑂𝐿 |𝐿) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186

𝑁(𝑂𝐿 |𝐿)

𝑁ref(𝑂𝐿)
=

1
𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁

𝑁 𝑁 (𝑂𝐿)

𝑁ref(𝑂𝐿)
, (9)

expressed using only a finite number of 𝐿-independent density ratios, 𝑁 𝑁 (𝑂𝐿)/𝑁ref(𝑂𝐿). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

𝑁ref(𝑂𝐿) =
1∑
𝑂
𝑃𝑂

𝑀signals∑
𝑂

𝑃𝑂 𝑁𝑂 (𝑂𝐿), (10)

2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.
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space can guide decisions about neural network architecture optimisation and data pre-processing. Such195

iterative optimisation is essential to achieve a high level of accuracy in likelihood-ratio estimation. Since196

the ensembles are trained on bootstrapped samples, it is natural to use the spread in their predictions to197

quantify the uncertainty due to the limited training data.198

3 Example use case: ggF Off-shell Higgs Production199

The developed NSBI framework is demonstrated using a subset of simulated samples originally generated200

for an off-shell Higgs signal strength measurement in the � ! // ! 4✓ decay channel. The full context201

of the analysis is described in Ref. [7], and only the details relevant for NSBI will be summarised below.202

Only a subset of the physics processes and systematic uncertainties from the original analysis are considered203

for this demonstration.204

When the quantum interference is negligible, a single observable that optimally separates signal from205

background contains all the information necessary to perform optimal hypothesis tests over the full range206

of signal strength values (see Eq. 5). However, this is no longer true when quantum interference cannot be207

ignored, and therefore does not apply to the off-shell Higgs analysis, where there is considerable destructive208

quantum interference between the signal and background processes. In this case, the impact of the signal209

strength ` on the probability model is non-linear, as will be described below, and Ref. [2] proposes the use210

of NSBI to fully account for these non-linear effects.211

The analysis by ATLAS in Ref. [7] included simulated samples from 66 ! � ! // ! 4✓ signal-only212

(S) production, 66 ! // ! 4✓ background-only (B) production, and the combined simulation including213

interference effects 66 ! (�) ! // ! 4✓ (SBI1, where the subscript indicates that ` was set to 1 for214

the simulation). These processes from the gluon-gluon fusion (ggF) production channel will be re-used215

for the demonstrations in this paper. In principle a coupling modifier parameter that scales the signal216

amplitude could be a complex number, which would lead to a phase contributing to the interference term217

in the cross-section computation. This would require the measurement of two independent parameters218

of interest, which can be done with NSBI. In this analysis however, the modifier p` is assumed to be a219

positive real number, and therefore only the inference of one parameter of interest ` is required. The full220

ggF probability model can be expressed as221

?ggF(G |`) =
1
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`)aB. The contribution from the interference (I) is222

represented using ?I = ?SBI1 � ?B � ?S, and it is the inference effects that introduce the non-linearity in `.223

For simplicity, the ggF subscripts will be suppressed henceforth. The definition for the reference in Eq. 8224

leads to ?ref = ?S for this example, and the search oriented mixture model from Eq. 7 becomes225
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This can be constructed using two ensembles, the first to estimate ?SBI1 (G)/?S(G) and the second226

?B(G)/?S(G). The event section strategy follows to Ref. [7], and uses in addition a multi-variate-analysis-227

based discriminant, similar to the discriminant used in that analysis, to define the signal and control regions.228

The rest of this section will describe input features and architecture for the ensemble of networks trained229

for these tasks, and the systematics model considered in this demonstration.230
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observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164

When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coe!cients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength 𝐿), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use di"erent physics processes that give rise to the same final173

state, each with a coe!cient that is some function of the parameter of interest. If the decomposition is into174

𝑀 di"erent components, representing di"erent physics processes,175

𝑁(𝑂𝐿 |𝐿) =
1

𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁 𝑁 𝑁 (𝑂𝐿), (8)

where 𝑁 𝑁 (𝑂𝐿) is the probability density for the event 𝑂𝐿 correspeonding to the process 𝑅 , and 𝑃 𝑁 the inclusive176

rate for that process are defined with 𝐿 at the Standard Model value. The full dependence on 𝐿 can be177

captured using only the coe!cients 𝑄 𝑁 (𝐿) and the total rate 𝑃(𝐿). Such a decomposition is possible for a178

wide range of LHC analyses where the coe!cients 𝑄 𝑁 (𝐿) are known from theory2 [4]. These coe!cients are179

also used together with the inclusive rates (estimated from simulations) for each process (𝑃 𝑁) to determine180

𝑃(𝐿) =
∑

𝑄 𝑁 (𝐿) · 𝑃 𝑁 . Here 𝐿 could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to 𝑁 𝑁 (𝑂𝐿 |𝐿) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186

𝑁(𝑂𝐿 |𝐿)

𝑁ref(𝑂𝐿)
=

1
𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁

𝑁 𝑁 (𝑂𝐿)

𝑁ref(𝑂𝐿)
, (9)

expressed using only a finite number of 𝐿-independent density ratios, 𝑁 𝑁 (𝑂𝐿)/𝑁ref(𝑂𝐿). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

𝑁ref(𝑂𝐿) =
1∑
𝑂
𝑃𝑂

𝑀signals∑
𝑂

𝑃𝑂 𝑁𝑂 (𝑂𝐿), (10)

2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.
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space can guide decisions about neural network architecture optimisation and data pre-processing. Such195

iterative optimisation is essential to achieve a high level of accuracy in likelihood-ratio estimation. Since196

the ensembles are trained on bootstrapped samples, it is natural to use the spread in their predictions to197

quantify the uncertainty due to the limited training data.198

3 Example use case: ggF Off-shell Higgs Production199

The developed NSBI framework is demonstrated using a subset of simulated samples originally generated200

for an off-shell Higgs signal strength measurement in the � ! // ! 4✓ decay channel. The full context201

of the analysis is described in Ref. [7], and only the details relevant for NSBI will be summarised below.202

Only a subset of the physics processes and systematic uncertainties from the original analysis are considered203

for this demonstration.204

When the quantum interference is negligible, a single observable that optimally separates signal from205

background contains all the information necessary to perform optimal hypothesis tests over the full range206

of signal strength values (see Eq. 5). However, this is no longer true when quantum interference cannot be207

ignored, and therefore does not apply to the off-shell Higgs analysis, where there is considerable destructive208

quantum interference between the signal and background processes. In this case, the impact of the signal209

strength ` on the probability model is non-linear, as will be described below, and Ref. [2] proposes the use210

of NSBI to fully account for these non-linear effects.211

The analysis by ATLAS in Ref. [7] included simulated samples from 66 ! � ! // ! 4✓ signal-only212

(S) production, 66 ! // ! 4✓ background-only (B) production, and the combined simulation including213

interference effects 66 ! (�) ! // ! 4✓ (SBI1, where the subscript indicates that ` was set to 1 for214

the simulation). These processes from the gluon-gluon fusion (ggF) production channel will be re-used215

for the demonstrations in this paper. In principle a coupling modifier parameter that scales the signal216

amplitude could be a complex number, which would lead to a phase contributing to the interference term217

in the cross-section computation. This would require the measurement of two independent parameters218

of interest, which can be done with NSBI. In this analysis however, the modifier p` is assumed to be a219

positive real number, and therefore only the inference of one parameter of interest ` is required. The full220

ggF probability model can be expressed as221

?ggF(G |`) =
1

aggF(`)

⇥
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`) a( ?S(G) +
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, (9)

where aggF(`) = (` �
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`) a( +
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` aSBI1 + (1 �

p
`)aB. The contribution from the interference (I) is222

represented using ?I = ?SBI1 � ?B � ?S, and it is the inference effects that introduce the non-linearity in `.223

For simplicity, the ggF subscripts will be suppressed henceforth. The definition for the reference in Eq. 8224

leads to ?ref = ?S for this example, and the search oriented mixture model from Eq. 7 becomes225
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This can be constructed using two ensembles, the first to estimate ?SBI1 (G)/?S(G) and the second226

?B(G)/?S(G). The event section strategy follows to Ref. [7], and uses in addition a multi-variate-analysis-227

based discriminant, similar to the discriminant used in that analysis, to define the signal and control regions.228

The rest of this section will describe input features and architecture for the ensemble of networks trained229

for these tasks, and the systematics model considered in this demonstration.230
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observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164

When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coe!cients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength 𝐿), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use di"erent physics processes that give rise to the same final173

state, each with a coe!cient that is some function of the parameter of interest. If the decomposition is into174

𝑀 di"erent components, representing di"erent physics processes,175

𝑁(𝑂𝐿 |𝐿) =
1

𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁 𝑁 𝑁 (𝑂𝐿), (8)

where 𝑁 𝑁 (𝑂𝐿) is the probability density for the event 𝑂𝐿 correspeonding to the process 𝑅 , and 𝑃 𝑁 the inclusive176

rate for that process are defined with 𝐿 at the Standard Model value. The full dependence on 𝐿 can be177

captured using only the coe!cients 𝑄 𝑁 (𝐿) and the total rate 𝑃(𝐿). Such a decomposition is possible for a178

wide range of LHC analyses where the coe!cients 𝑄 𝑁 (𝐿) are known from theory2 [4]. These coe!cients are179

also used together with the inclusive rates (estimated from simulations) for each process (𝑃 𝑁) to determine180

𝑃(𝐿) =
∑

𝑄 𝑁 (𝐿) · 𝑃 𝑁 . Here 𝐿 could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to 𝑁 𝑁 (𝑂𝐿 |𝐿) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186

𝑁(𝑂𝐿 |𝐿)

𝑁ref(𝑂𝐿)
=

1
𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁

𝑁 𝑁 (𝑂𝐿)

𝑁ref(𝑂𝐿)
, (9)

expressed using only a finite number of 𝐿-independent density ratios, 𝑁 𝑁 (𝑂𝐿)/𝑁ref(𝑂𝐿). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

𝑁ref(𝑂𝐿) =
1∑
𝑂
𝑃𝑂

𝑀signals∑
𝑂

𝑃𝑂 𝑁𝑂 (𝑂𝐿), (10)

2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.
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space can guide decisions about neural network architecture optimisation and data pre-processing. Such195

iterative optimisation is essential to achieve a high level of accuracy in likelihood-ratio estimation. Since196

the ensembles are trained on bootstrapped samples, it is natural to use the spread in their predictions to197

quantify the uncertainty due to the limited training data.198

3 Example use case: ggF Off-shell Higgs Production199

The developed NSBI framework is demonstrated using a subset of simulated samples originally generated200

for an off-shell Higgs signal strength measurement in the � ! // ! 4✓ decay channel. The full context201

of the analysis is described in Ref. [7], and only the details relevant for NSBI will be summarised below.202

Only a subset of the physics processes and systematic uncertainties from the original analysis are considered203

for this demonstration.204

When the quantum interference is negligible, a single observable that optimally separates signal from205

background contains all the information necessary to perform optimal hypothesis tests over the full range206

of signal strength values (see Eq. 5). However, this is no longer true when quantum interference cannot be207

ignored, and therefore does not apply to the off-shell Higgs analysis, where there is considerable destructive208

quantum interference between the signal and background processes. In this case, the impact of the signal209

strength ` on the probability model is non-linear, as will be described below, and Ref. [2] proposes the use210

of NSBI to fully account for these non-linear effects.211

The analysis by ATLAS in Ref. [7] included simulated samples from 66 ! � ! // ! 4✓ signal-only212

(S) production, 66 ! // ! 4✓ background-only (B) production, and the combined simulation including213

interference effects 66 ! (�) ! // ! 4✓ (SBI1, where the subscript indicates that ` was set to 1 for214

the simulation). These processes from the gluon-gluon fusion (ggF) production channel will be re-used215

for the demonstrations in this paper. In principle a coupling modifier parameter that scales the signal216

amplitude could be a complex number, which would lead to a phase contributing to the interference term217

in the cross-section computation. This would require the measurement of two independent parameters218

of interest, which can be done with NSBI. In this analysis however, the modifier p` is assumed to be a219

positive real number, and therefore only the inference of one parameter of interest ` is required. The full220

ggF probability model can be expressed as221
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` aSBI1 + (1 �

p
`)aB. The contribution from the interference (I) is222

represented using ?I = ?SBI1 � ?B � ?S, and it is the inference effects that introduce the non-linearity in `.223

For simplicity, the ggF subscripts will be suppressed henceforth. The definition for the reference in Eq. 8224

leads to ?ref = ?S for this example, and the search oriented mixture model from Eq. 7 becomes225
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This can be constructed using two ensembles, the first to estimate ?SBI1 (G)/?S(G) and the second226

?B(G)/?S(G). The event section strategy follows to Ref. [7], and uses in addition a multi-variate-analysis-227

based discriminant, similar to the discriminant used in that analysis, to define the signal and control regions.228

The rest of this section will describe input features and architecture for the ensemble of networks trained229

for these tasks, and the systematics model considered in this demonstration.230
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observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164

When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coe!cients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength 𝐿), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use di"erent physics processes that give rise to the same final173

state, each with a coe!cient that is some function of the parameter of interest. If the decomposition is into174

𝑀 di"erent components, representing di"erent physics processes,175

𝑁(𝑂𝐿 |𝐿) =
1

𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁 𝑁 𝑁 (𝑂𝐿), (8)

where 𝑁 𝑁 (𝑂𝐿) is the probability density for the event 𝑂𝐿 correspeonding to the process 𝑅 , and 𝑃 𝑁 the inclusive176

rate for that process are defined with 𝐿 at the Standard Model value. The full dependence on 𝐿 can be177

captured using only the coe!cients 𝑄 𝑁 (𝐿) and the total rate 𝑃(𝐿). Such a decomposition is possible for a178

wide range of LHC analyses where the coe!cients 𝑄 𝑁 (𝐿) are known from theory2 [4]. These coe!cients are179

also used together with the inclusive rates (estimated from simulations) for each process (𝑃 𝑁) to determine180

𝑃(𝐿) =
∑

𝑄 𝑁 (𝐿) · 𝑃 𝑁 . Here 𝐿 could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to 𝑁 𝑁 (𝑂𝐿 |𝐿) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186

𝑁(𝑂𝐿 |𝐿)

𝑁ref(𝑂𝐿)
=

1
𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁

𝑁 𝑁 (𝑂𝐿)

𝑁ref(𝑂𝐿)
, (9)

expressed using only a finite number of 𝐿-independent density ratios, 𝑁 𝑁 (𝑂𝐿)/𝑁ref(𝑂𝐿). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

𝑁ref(𝑂𝐿) =
1∑
𝑂
𝑃𝑂

𝑀signals∑
𝑂

𝑃𝑂 𝑁𝑂 (𝑂𝐿), (10)

2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.
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observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164

When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coe!cients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength 𝐿), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use di"erent physics processes that give rise to the same final173

state, each with a coe!cient that is some function of the parameter of interest. If the decomposition is into174

𝑀 di"erent components, representing di"erent physics processes,175

𝑁(𝑂𝐿 |𝐿) =
1

𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁 𝑁 𝑁 (𝑂𝐿), (8)

where 𝑁 𝑁 (𝑂𝐿) is the probability density for the event 𝑂𝐿 correspeonding to the process 𝑅 , and 𝑃 𝑁 the inclusive176

rate for that process are defined with 𝐿 at the Standard Model value. The full dependence on 𝐿 can be177

captured using only the coe!cients 𝑄 𝑁 (𝐿) and the total rate 𝑃(𝐿). Such a decomposition is possible for a178

wide range of LHC analyses where the coe!cients 𝑄 𝑁 (𝐿) are known from theory2 [4]. These coe!cients are179

also used together with the inclusive rates (estimated from simulations) for each process (𝑃 𝑁) to determine180

𝑃(𝐿) =
∑

𝑄 𝑁 (𝐿) · 𝑃 𝑁 . Here 𝐿 could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to 𝑁 𝑁 (𝑂𝐿 |𝐿) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186

𝑁(𝑂𝐿 |𝐿)

𝑁ref(𝑂𝐿)
=

1
𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁

𝑁 𝑁 (𝑂𝐿)

𝑁ref(𝑂𝐿)
, (9)

expressed using only a finite number of 𝐿-independent density ratios, 𝑁 𝑁 (𝑂𝐿)/𝑁ref(𝑂𝐿). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

𝑁ref(𝑂𝐿) =
1∑
𝑂
𝑃𝑂

𝑀signals∑
𝑂

𝑃𝑂 𝑁𝑂 (𝑂𝐿), (10)

2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.
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space can guide decisions about neural network architecture optimisation and data pre-processing. Such195

iterative optimisation is essential to achieve a high level of accuracy in likelihood-ratio estimation. Since196

the ensembles are trained on bootstrapped samples, it is natural to use the spread in their predictions to197

quantify the uncertainty due to the limited training data.198

3 Example use case: ggF Off-shell Higgs Production199

The developed NSBI framework is demonstrated using a subset of simulated samples originally generated200

for an off-shell Higgs signal strength measurement in the � ! // ! 4✓ decay channel. The full context201

of the analysis is described in Ref. [7], and only the details relevant for NSBI will be summarised below.202

Only a subset of the physics processes and systematic uncertainties from the original analysis are considered203

for this demonstration.204

When the quantum interference is negligible, a single observable that optimally separates signal from205

background contains all the information necessary to perform optimal hypothesis tests over the full range206

of signal strength values (see Eq. 5). However, this is no longer true when quantum interference cannot be207

ignored, and therefore does not apply to the off-shell Higgs analysis, where there is considerable destructive208

quantum interference between the signal and background processes. In this case, the impact of the signal209

strength ` on the probability model is non-linear, as will be described below, and Ref. [2] proposes the use210

of NSBI to fully account for these non-linear effects.211

The analysis by ATLAS in Ref. [7] included simulated samples from 66 ! � ! // ! 4✓ signal-only212

(S) production, 66 ! // ! 4✓ background-only (B) production, and the combined simulation including213

interference effects 66 ! (�) ! // ! 4✓ (SBI1, where the subscript indicates that ` was set to 1 for214

the simulation). These processes from the gluon-gluon fusion (ggF) production channel will be re-used215

for the demonstrations in this paper. In principle a coupling modifier parameter that scales the signal216

amplitude could be a complex number, which would lead to a phase contributing to the interference term217

in the cross-section computation. This would require the measurement of two independent parameters218

of interest, which can be done with NSBI. In this analysis however, the modifier p` is assumed to be a219

positive real number, and therefore only the inference of one parameter of interest ` is required. The full220

ggF probability model can be expressed as221

?ggF(G |`) =
1

aggF(`)

⇥
(` �

p
`) a( ?S(G) +

p
` aSBI1 ?SBI1 (G) + (1 �

p
`)aB ?B(G)

⇤
, (9)

where aggF(`) = (` �
p
`) a( +

p
` aSBI1 + (1 �

p
`)aB. The contribution from the interference (I) is222

represented using ?I = ?SBI1 � ?B � ?S, and it is the inference effects that introduce the non-linearity in `.223

For simplicity, the ggF subscripts will be suppressed henceforth. The definition for the reference in Eq. 8224

leads to ?ref = ?S for this example, and the search oriented mixture model from Eq. 7 becomes225

?(G |`)

?S(G)
=

1
a(`)


(` �

p
`) a( +

p
` aSBI1

?SBI1 (G)

?S(G)
+ (1 �

p
`)aB

?B(G)

?S(G)

�
. (10)

This can be constructed using two ensembles, the first to estimate ?SBI1 (G)/?S(G) and the second226

?B(G)/?S(G). The event section strategy follows to Ref. [7], and uses in addition a multi-variate-analysis-227

based discriminant, similar to the discriminant used in that analysis, to define the signal and control regions.228

The rest of this section will describe input features and architecture for the ensemble of networks trained229

for these tasks, and the systematics model considered in this demonstration.230
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observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164

When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coe!cients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength 𝐿), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use di"erent physics processes that give rise to the same final173

state, each with a coe!cient that is some function of the parameter of interest. If the decomposition is into174

𝑀 di"erent components, representing di"erent physics processes,175

𝑁(𝑂𝐿 |𝐿) =
1

𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁 𝑁 𝑁 (𝑂𝐿), (8)

where 𝑁 𝑁 (𝑂𝐿) is the probability density for the event 𝑂𝐿 correspeonding to the process 𝑅 , and 𝑃 𝑁 the inclusive176

rate for that process are defined with 𝐿 at the Standard Model value. The full dependence on 𝐿 can be177

captured using only the coe!cients 𝑄 𝑁 (𝐿) and the total rate 𝑃(𝐿). Such a decomposition is possible for a178

wide range of LHC analyses where the coe!cients 𝑄 𝑁 (𝐿) are known from theory2 [4]. These coe!cients are179

also used together with the inclusive rates (estimated from simulations) for each process (𝑃 𝑁) to determine180

𝑃(𝐿) =
∑

𝑄 𝑁 (𝐿) · 𝑃 𝑁 . Here 𝐿 could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to 𝑁 𝑁 (𝑂𝐿 |𝐿) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186

𝑁(𝑂𝐿 |𝐿)

𝑁ref(𝑂𝐿)
=

1
𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁

𝑁 𝑁 (𝑂𝐿)

𝑁ref(𝑂𝐿)
, (9)

expressed using only a finite number of 𝐿-independent density ratios, 𝑁 𝑁 (𝑂𝐿)/𝑁ref(𝑂𝐿). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

𝑁ref(𝑂𝐿) =
1∑
𝑂
𝑃𝑂

𝑀signals∑
𝑂

𝑃𝑂 𝑁𝑂 (𝑂𝐿), (10)

2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.
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observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164

When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coe!cients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength 𝐿), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use di"erent physics processes that give rise to the same final173

state, each with a coe!cient that is some function of the parameter of interest. If the decomposition is into174

𝑀 di"erent components, representing di"erent physics processes,175

𝑁(𝑂𝐿 |𝐿) =
1

𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁 𝑁 𝑁 (𝑂𝐿), (8)

where 𝑁 𝑁 (𝑂𝐿) is the probability density for the event 𝑂𝐿 correspeonding to the process 𝑅 , and 𝑃 𝑁 the inclusive176

rate for that process are defined with 𝐿 at the Standard Model value. The full dependence on 𝐿 can be177

captured using only the coe!cients 𝑄 𝑁 (𝐿) and the total rate 𝑃(𝐿). Such a decomposition is possible for a178

wide range of LHC analyses where the coe!cients 𝑄 𝑁 (𝐿) are known from theory2 [4]. These coe!cients are179

also used together with the inclusive rates (estimated from simulations) for each process (𝑃 𝑁) to determine180

𝑃(𝐿) =
∑

𝑄 𝑁 (𝐿) · 𝑃 𝑁 . Here 𝐿 could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to 𝑁 𝑁 (𝑂𝐿 |𝐿) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186

𝑁(𝑂𝐿 |𝐿)

𝑁ref(𝑂𝐿)
=

1
𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁

𝑁 𝑁 (𝑂𝐿)

𝑁ref(𝑂𝐿)
, (9)

expressed using only a finite number of 𝐿-independent density ratios, 𝑁 𝑁 (𝑂𝐿)/𝑁ref(𝑂𝐿). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

𝑁ref(𝑂𝐿) =
1∑
𝑂
𝑃𝑂

𝑀signals∑
𝑂

𝑃𝑂 𝑁𝑂 (𝑂𝐿), (10)

2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.
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space can guide decisions about neural network architecture optimisation and data pre-processing. Such195

iterative optimisation is essential to achieve a high level of accuracy in likelihood-ratio estimation. Since196

the ensembles are trained on bootstrapped samples, it is natural to use the spread in their predictions to197

quantify the uncertainty due to the limited training data.198

3 Example use case: ggF Off-shell Higgs Production199

The developed NSBI framework is demonstrated using a subset of simulated samples originally generated200

for an off-shell Higgs signal strength measurement in the � ! // ! 4✓ decay channel. The full context201

of the analysis is described in Ref. [7], and only the details relevant for NSBI will be summarised below.202

Only a subset of the physics processes and systematic uncertainties from the original analysis are considered203

for this demonstration.204

When the quantum interference is negligible, a single observable that optimally separates signal from205

background contains all the information necessary to perform optimal hypothesis tests over the full range206

of signal strength values (see Eq. 5). However, this is no longer true when quantum interference cannot be207

ignored, and therefore does not apply to the off-shell Higgs analysis, where there is considerable destructive208

quantum interference between the signal and background processes. In this case, the impact of the signal209

strength ` on the probability model is non-linear, as will be described below, and Ref. [2] proposes the use210

of NSBI to fully account for these non-linear effects.211

The analysis by ATLAS in Ref. [7] included simulated samples from 66 ! � ! // ! 4✓ signal-only212

(S) production, 66 ! // ! 4✓ background-only (B) production, and the combined simulation including213

interference effects 66 ! (�) ! // ! 4✓ (SBI1, where the subscript indicates that ` was set to 1 for214

the simulation). These processes from the gluon-gluon fusion (ggF) production channel will be re-used215

for the demonstrations in this paper. In principle a coupling modifier parameter that scales the signal216

amplitude could be a complex number, which would lead to a phase contributing to the interference term217

in the cross-section computation. This would require the measurement of two independent parameters218

of interest, which can be done with NSBI. In this analysis however, the modifier p` is assumed to be a219

positive real number, and therefore only the inference of one parameter of interest ` is required. The full220

ggF probability model can be expressed as221

?ggF(G |`) =
1

aggF(`)

⇥
(` �

p
`) a( ?S(G) +

p
` aSBI1 ?SBI1 (G) + (1 �

p
`)aB ?B(G)

⇤
, (9)

where aggF(`) = (` �
p
`) a( +

p
` aSBI1 + (1 �

p
`)aB. The contribution from the interference (I) is222

represented using ?I = ?SBI1 � ?B � ?S, and it is the inference effects that introduce the non-linearity in `.223

For simplicity, the ggF subscripts will be suppressed henceforth. The definition for the reference in Eq. 8224

leads to ?ref = ?S for this example, and the search oriented mixture model from Eq. 7 becomes225

?(G |`)

?S(G)
=

1
a(`)


(` �

p
`) a( +

p
` aSBI1

?SBI1 (G)

?S(G)
+ (1 �

p
`)aB

?B(G)

?S(G)

�
. (10)

This can be constructed using two ensembles, the first to estimate ?SBI1 (G)/?S(G) and the second226

?B(G)/?S(G). The event section strategy follows to Ref. [7], and uses in addition a multi-variate-analysis-227

based discriminant, similar to the discriminant used in that analysis, to define the signal and control regions.228

The rest of this section will describe input features and architecture for the ensemble of networks trained229

for these tasks, and the systematics model considered in this demonstration.230
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space can guide decisions about neural network architecture optimisation and data pre-processing. Such195

iterative optimisation is essential to achieve a high level of accuracy in likelihood-ratio estimation. Since196

the ensembles are trained on bootstrapped samples, it is natural to use the spread in their predictions to197

quantify the uncertainty due to the limited training data.198

3 Example use case: ggF Off-shell Higgs Production199

The developed NSBI framework is demonstrated using a subset of simulated samples originally generated200

for an off-shell Higgs signal strength measurement in the � ! // ! 4✓ decay channel. The full context201

of the analysis is described in Ref. [7], and only the details relevant for NSBI will be summarised below.202

Only a subset of the physics processes and systematic uncertainties from the original analysis are considered203

for this demonstration.204

When the quantum interference is negligible, a single observable that optimally separates signal from205

background contains all the information necessary to perform optimal hypothesis tests over the full range206

of signal strength values (see Eq. 5). However, this is no longer true when quantum interference cannot be207

ignored, and therefore does not apply to the off-shell Higgs analysis, where there is considerable destructive208

quantum interference between the signal and background processes. In this case, the impact of the signal209

strength ` on the probability model is non-linear, as will be described below, and Ref. [2] proposes the use210

of NSBI to fully account for these non-linear effects.211

The analysis by ATLAS in Ref. [7] included simulated samples from 66 ! � ! // ! 4✓ signal-only212

(S) production, 66 ! // ! 4✓ background-only (B) production, and the combined simulation including213

interference effects 66 ! (�) ! // ! 4✓ (SBI1, where the subscript indicates that ` was set to 1 for214

the simulation). These processes from the gluon-gluon fusion (ggF) production channel will be re-used215

for the demonstrations in this paper. In principle a coupling modifier parameter that scales the signal216

amplitude could be a complex number, which would lead to a phase contributing to the interference term217

in the cross-section computation. This would require the measurement of two independent parameters218

of interest, which can be done with NSBI. In this analysis however, the modifier p` is assumed to be a219

positive real number, and therefore only the inference of one parameter of interest ` is required. The full220

ggF probability model can be expressed as221

?ggF(G |`) =
1

aggF(`)

⇥
(` �

p
`) a( ?S(G) +

p
` aSBI1 ?SBI1 (G) + (1 �

p
`)aB ?B(G)

⇤
, (9)

where aggF(`) = (` �
p
`) a( +

p
` aSBI1 + (1 �

p
`)aB. The contribution from the interference (I) is222

represented using ?I = ?SBI1 � ?B � ?S, and it is the inference effects that introduce the non-linearity in `.223

For simplicity, the ggF subscripts will be suppressed henceforth. The definition for the reference in Eq. 8224

leads to ?ref = ?S for this example, and the search oriented mixture model from Eq. 7 becomes225
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This can be constructed using two ensembles, the first to estimate ?SBI1 (G)/?S(G) and the second226

?B(G)/?S(G). The event section strategy follows to Ref. [7], and uses in addition a multi-variate-analysis-227

based discriminant, similar to the discriminant used in that analysis, to define the signal and control regions.228

The rest of this section will describe input features and architecture for the ensemble of networks trained229

for these tasks, and the systematics model considered in this demonstration.230
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observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164

When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coe!cients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength 𝐿), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use di"erent physics processes that give rise to the same final173

state, each with a coe!cient that is some function of the parameter of interest. If the decomposition is into174

𝑀 di"erent components, representing di"erent physics processes,175

𝑁(𝑂𝐿 |𝐿) =
1

𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁 𝑁 𝑁 (𝑂𝐿), (8)

where 𝑁 𝑁 (𝑂𝐿) is the probability density for the event 𝑂𝐿 correspeonding to the process 𝑅 , and 𝑃 𝑁 the inclusive176

rate for that process are defined with 𝐿 at the Standard Model value. The full dependence on 𝐿 can be177

captured using only the coe!cients 𝑄 𝑁 (𝐿) and the total rate 𝑃(𝐿). Such a decomposition is possible for a178

wide range of LHC analyses where the coe!cients 𝑄 𝑁 (𝐿) are known from theory2 [4]. These coe!cients are179

also used together with the inclusive rates (estimated from simulations) for each process (𝑃 𝑁) to determine180

𝑃(𝐿) =
∑

𝑄 𝑁 (𝐿) · 𝑃 𝑁 . Here 𝐿 could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to 𝑁 𝑁 (𝑂𝐿 |𝐿) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186

𝑁(𝑂𝐿 |𝐿)

𝑁ref(𝑂𝐿)
=

1
𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁

𝑁 𝑁 (𝑂𝐿)

𝑁ref(𝑂𝐿)
, (9)

expressed using only a finite number of 𝐿-independent density ratios, 𝑁 𝑁 (𝑂𝐿)/𝑁ref(𝑂𝐿). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

𝑁ref(𝑂𝐿) =
1∑
𝑂
𝑃𝑂

𝑀signals∑
𝑂

𝑃𝑂 𝑁𝑂 (𝑂𝐿), (10)

2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.
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observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162
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where 𝑁 𝑁 (𝑂𝐿) is the probability density for the event 𝑂𝐿 correspeonding to the process 𝑅 , and 𝑃 𝑁 the inclusive176

rate for that process are defined with 𝐿 at the Standard Model value. The full dependence on 𝐿 can be177

captured using only the coe!cients 𝑄 𝑁 (𝐿) and the total rate 𝑃(𝐿). Such a decomposition is possible for a178

wide range of LHC analyses where the coe!cients 𝑄 𝑁 (𝐿) are known from theory2 [4]. These coe!cients are179

also used together with the inclusive rates (estimated from simulations) for each process (𝑃 𝑁) to determine180
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𝑄 𝑁 (𝐿) · 𝑃 𝑁 . Here 𝐿 could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to 𝑁 𝑁 (𝑂𝐿 |𝐿) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186

𝑁(𝑂𝐿 |𝐿)
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=
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expressed using only a finite number of 𝐿-independent density ratios, 𝑁 𝑁 (𝑂𝐿)/𝑁ref(𝑂𝐿). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

𝑁ref(𝑂𝐿) =
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𝑂
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2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.
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space can guide decisions about neural network architecture optimisation and data pre-processing. Such195

iterative optimisation is essential to achieve a high level of accuracy in likelihood-ratio estimation. Since196

the ensembles are trained on bootstrapped samples, it is natural to use the spread in their predictions to197

quantify the uncertainty due to the limited training data.198

3 Example use case: ggF Off-shell Higgs Production199

The developed NSBI framework is demonstrated using a subset of simulated samples originally generated200

for an off-shell Higgs signal strength measurement in the � ! // ! 4✓ decay channel. The full context201

of the analysis is described in Ref. [7], and only the details relevant for NSBI will be summarised below.202

Only a subset of the physics processes and systematic uncertainties from the original analysis are considered203

for this demonstration.204

When the quantum interference is negligible, a single observable that optimally separates signal from205

background contains all the information necessary to perform optimal hypothesis tests over the full range206

of signal strength values (see Eq. 5). However, this is no longer true when quantum interference cannot be207

ignored, and therefore does not apply to the off-shell Higgs analysis, where there is considerable destructive208

quantum interference between the signal and background processes. In this case, the impact of the signal209

strength ` on the probability model is non-linear, as will be described below, and Ref. [2] proposes the use210

of NSBI to fully account for these non-linear effects.211

The analysis by ATLAS in Ref. [7] included simulated samples from 66 ! � ! // ! 4✓ signal-only212

(S) production, 66 ! // ! 4✓ background-only (B) production, and the combined simulation including213

interference effects 66 ! (�) ! // ! 4✓ (SBI1, where the subscript indicates that ` was set to 1 for214

the simulation). These processes from the gluon-gluon fusion (ggF) production channel will be re-used215

for the demonstrations in this paper. In principle a coupling modifier parameter that scales the signal216

amplitude could be a complex number, which would lead to a phase contributing to the interference term217

in the cross-section computation. This would require the measurement of two independent parameters218

of interest, which can be done with NSBI. In this analysis however, the modifier p` is assumed to be a219

positive real number, and therefore only the inference of one parameter of interest ` is required. The full220

ggF probability model can be expressed as221

?ggF(G |`) =
1

aggF(`)

⇥
(` �

p
`) a( ?S(G) +

p
` aSBI1 ?SBI1 (G) + (1 �

p
`)aB ?B(G)

⇤
, (9)

where aggF(`) = (` �
p
`) a( +

p
` aSBI1 + (1 �

p
`)aB. The contribution from the interference (I) is222

represented using ?I = ?SBI1 � ?B � ?S, and it is the inference effects that introduce the non-linearity in `.223

For simplicity, the ggF subscripts will be suppressed henceforth. The definition for the reference in Eq. 8224

leads to ?ref = ?S for this example, and the search oriented mixture model from Eq. 7 becomes225

?(G |`)

?S(G)
=

1
a(`)


(` �

p
`) a( +

p
` aSBI1

?SBI1 (G)

?S(G)
+ (1 �

p
`)aB

?B(G)

?S(G)

�
. (10)

This can be constructed using two ensembles, the first to estimate ?SBI1 (G)/?S(G) and the second226

?B(G)/?S(G). The event section strategy follows to Ref. [7], and uses in addition a multi-variate-analysis-227

based discriminant, similar to the discriminant used in that analysis, to define the signal and control regions.228

The rest of this section will describe input features and architecture for the ensemble of networks trained229

for these tasks, and the systematics model considered in this demonstration.230
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space can guide decisions about neural network architecture optimisation and data pre-processing. Such195
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for an off-shell Higgs signal strength measurement in the � ! // ! 4✓ decay channel. The full context201

of the analysis is described in Ref. [7], and only the details relevant for NSBI will be summarised below.202

Only a subset of the physics processes and systematic uncertainties from the original analysis are considered203

for this demonstration.204

When the quantum interference is negligible, a single observable that optimally separates signal from205

background contains all the information necessary to perform optimal hypothesis tests over the full range206

of signal strength values (see Eq. 5). However, this is no longer true when quantum interference cannot be207

ignored, and therefore does not apply to the off-shell Higgs analysis, where there is considerable destructive208

quantum interference between the signal and background processes. In this case, the impact of the signal209

strength ` on the probability model is non-linear, as will be described below, and Ref. [2] proposes the use210

of NSBI to fully account for these non-linear effects.211

The analysis by ATLAS in Ref. [7] included simulated samples from 66 ! � ! // ! 4✓ signal-only212

(S) production, 66 ! // ! 4✓ background-only (B) production, and the combined simulation including213

interference effects 66 ! (�) ! // ! 4✓ (SBI1, where the subscript indicates that ` was set to 1 for214

the simulation). These processes from the gluon-gluon fusion (ggF) production channel will be re-used215

for the demonstrations in this paper. In principle a coupling modifier parameter that scales the signal216

amplitude could be a complex number, which would lead to a phase contributing to the interference term217

in the cross-section computation. This would require the measurement of two independent parameters218

of interest, which can be done with NSBI. In this analysis however, the modifier p` is assumed to be a219

positive real number, and therefore only the inference of one parameter of interest ` is required. The full220

ggF probability model can be expressed as221
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?B(G)/?S(G). The event section strategy follows to Ref. [7], and uses in addition a multi-variate-analysis-227

based discriminant, similar to the discriminant used in that analysis, to define the signal and control regions.228
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observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164

When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coe!cients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength 𝐿), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use di"erent physics processes that give rise to the same final173

state, each with a coe!cient that is some function of the parameter of interest. If the decomposition is into174

𝑀 di"erent components, representing di"erent physics processes,175

𝑁(𝑂𝐿 |𝐿) =
1

𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁 𝑁 𝑁 (𝑂𝐿), (8)

where 𝑁 𝑁 (𝑂𝐿) is the probability density for the event 𝑂𝐿 correspeonding to the process 𝑅 , and 𝑃 𝑁 the inclusive176

rate for that process are defined with 𝐿 at the Standard Model value. The full dependence on 𝐿 can be177

captured using only the coe!cients 𝑄 𝑁 (𝐿) and the total rate 𝑃(𝐿). Such a decomposition is possible for a178

wide range of LHC analyses where the coe!cients 𝑄 𝑁 (𝐿) are known from theory2 [4]. These coe!cients are179

also used together with the inclusive rates (estimated from simulations) for each process (𝑃 𝑁) to determine180

𝑃(𝐿) =
∑

𝑄 𝑁 (𝐿) · 𝑃 𝑁 . Here 𝐿 could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to 𝑁 𝑁 (𝑂𝐿 |𝐿) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186

𝑁(𝑂𝐿 |𝐿)

𝑁ref(𝑂𝐿)
=

1
𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁

𝑁 𝑁 (𝑂𝐿)

𝑁ref(𝑂𝐿)
, (9)

expressed using only a finite number of 𝐿-independent density ratios, 𝑁 𝑁 (𝑂𝐿)/𝑁ref(𝑂𝐿). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

𝑁ref(𝑂𝐿) =
1∑
𝑂
𝑃𝑂

𝑀signals∑
𝑂

𝑃𝑂 𝑁𝑂 (𝑂𝐿), (10)

2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.
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observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164

When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coe!cients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength 𝐿), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use di"erent physics processes that give rise to the same final173

state, each with a coe!cient that is some function of the parameter of interest. If the decomposition is into174

𝑀 di"erent components, representing di"erent physics processes,175

𝑁(𝑂𝐿 |𝐿) =
1

𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁 𝑁 𝑁 (𝑂𝐿), (8)

where 𝑁 𝑁 (𝑂𝐿) is the probability density for the event 𝑂𝐿 correspeonding to the process 𝑅 , and 𝑃 𝑁 the inclusive176

rate for that process are defined with 𝐿 at the Standard Model value. The full dependence on 𝐿 can be177

captured using only the coe!cients 𝑄 𝑁 (𝐿) and the total rate 𝑃(𝐿). Such a decomposition is possible for a178

wide range of LHC analyses where the coe!cients 𝑄 𝑁 (𝐿) are known from theory2 [4]. These coe!cients are179

also used together with the inclusive rates (estimated from simulations) for each process (𝑃 𝑁) to determine180

𝑃(𝐿) =
∑

𝑄 𝑁 (𝐿) · 𝑃 𝑁 . Here 𝐿 could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to 𝑁 𝑁 (𝑂𝐿 |𝐿) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186

𝑁(𝑂𝐿 |𝐿)

𝑁ref(𝑂𝐿)
=

1
𝑃(𝐿)
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expressed using only a finite number of 𝐿-independent density ratios, 𝑁 𝑁 (𝑂𝐿)/𝑁ref(𝑂𝐿). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

𝑁ref(𝑂𝐿) =
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2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.
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observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164

When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coe!cients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength 𝐿), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use di"erent physics processes that give rise to the same final173

state, each with a coe!cient that is some function of the parameter of interest. If the decomposition is into174

𝑀 di"erent components, representing di"erent physics processes,175

𝑁(𝑂𝐿 |𝐿) =
1

𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁 𝑁 𝑁 (𝑂𝐿), (8)

where 𝑁 𝑁 (𝑂𝐿) is the probability density for the event 𝑂𝐿 correspeonding to the process 𝑅 , and 𝑃 𝑁 the inclusive176

rate for that process are defined with 𝐿 at the Standard Model value. The full dependence on 𝐿 can be177

captured using only the coe!cients 𝑄 𝑁 (𝐿) and the total rate 𝑃(𝐿). Such a decomposition is possible for a178

wide range of LHC analyses where the coe!cients 𝑄 𝑁 (𝐿) are known from theory2 [4]. These coe!cients are179

also used together with the inclusive rates (estimated from simulations) for each process (𝑃 𝑁) to determine180

𝑃(𝐿) =
∑

𝑄 𝑁 (𝐿) · 𝑃 𝑁 . Here 𝐿 could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to 𝑁 𝑁 (𝑂𝐿 |𝐿) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186

𝑁(𝑂𝐿 |𝐿)

𝑁ref(𝑂𝐿)
=

1
𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁

𝑁 𝑁 (𝑂𝐿)

𝑁ref(𝑂𝐿)
, (9)

expressed using only a finite number of 𝐿-independent density ratios, 𝑁 𝑁 (𝑂𝐿)/𝑁ref(𝑂𝐿). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

𝑁ref(𝑂𝐿) =
1∑
𝑂
𝑃𝑂

𝑀signals∑
𝑂

𝑃𝑂 𝑁𝑂 (𝑂𝐿), (10)

2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.
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In gluon-fusion (ggF) production of 66 ! // ! 4✓, the signal component is defined at leading-order76

(LO) in perturbation theory by the absolute value squared of the diagram in Fig 1 (a). This contribution77

scales as ^2
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+ . The background component is defined at LO in perturbation theory by the absolute value78

square of the diagram in Fig 1 (b). This component does not scale with ^ 5 nor with ^+ . The interference79

between the two diagrams scales with ^ 5 ^+ . The interference between the two diagrams is negative, as80

required by unitarity conservation [16]. The same concepts can be generalized for the electroweak (EW)81

production of @@̄ ! // + 2 9 ! 4✓ + 2 9 . In this case, the signal scales as ^4
+ , the interference scales as82
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2
+ , and the background component does not scale. The LO Feynman diagrams for the production of EW83

@@̄ ! // + 2 9 ! 4✓ are shown in Fig 2.84
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observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164

When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coe!cients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength 𝐿), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use di"erent physics processes that give rise to the same final173

state, each with a coe!cient that is some function of the parameter of interest. If the decomposition is into174

𝑀 di"erent components, representing di"erent physics processes,175

𝑁(𝑂𝐿 |𝐿) =
1

𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁 𝑁 𝑁 (𝑂𝐿), (8)

where 𝑁 𝑁 (𝑂𝐿) is the probability density for the event 𝑂𝐿 correspeonding to the process 𝑅 , and 𝑃 𝑁 the inclusive176

rate for that process are defined with 𝐿 at the Standard Model value. The full dependence on 𝐿 can be177

captured using only the coe!cients 𝑄 𝑁 (𝐿) and the total rate 𝑃(𝐿). Such a decomposition is possible for a178

wide range of LHC analyses where the coe!cients 𝑄 𝑁 (𝐿) are known from theory2 [4]. These coe!cients are179

also used together with the inclusive rates (estimated from simulations) for each process (𝑃 𝑁) to determine180

𝑃(𝐿) =
∑

𝑄 𝑁 (𝐿) · 𝑃 𝑁 . Here 𝐿 could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to 𝑁 𝑁 (𝑂𝐿 |𝐿) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186

𝑁(𝑂𝐿 |𝐿)

𝑁ref(𝑂𝐿)
=

1
𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁

𝑁 𝑁 (𝑂𝐿)

𝑁ref(𝑂𝐿)
, (9)

expressed using only a finite number of 𝐿-independent density ratios, 𝑁 𝑁 (𝑂𝐿)/𝑁ref(𝑂𝐿). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

𝑁ref(𝑂𝐿) =
1∑
𝑂
𝑃𝑂

𝑀signals∑
𝑂

𝑃𝑂 𝑁𝑂 (𝑂𝐿), (10)

2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.
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observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164

When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coe!cients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength 𝐿), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use di"erent physics processes that give rise to the same final173

state, each with a coe!cient that is some function of the parameter of interest. If the decomposition is into174

𝑀 di"erent components, representing di"erent physics processes,175

𝑁(𝑂𝐿 |𝐿) =
1

𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁 𝑁 𝑁 (𝑂𝐿), (8)

where 𝑁 𝑁 (𝑂𝐿) is the probability density for the event 𝑂𝐿 correspeonding to the process 𝑅 , and 𝑃 𝑁 the inclusive176

rate for that process are defined with 𝐿 at the Standard Model value. The full dependence on 𝐿 can be177

captured using only the coe!cients 𝑄 𝑁 (𝐿) and the total rate 𝑃(𝐿). Such a decomposition is possible for a178

wide range of LHC analyses where the coe!cients 𝑄 𝑁 (𝐿) are known from theory2 [4]. These coe!cients are179

also used together with the inclusive rates (estimated from simulations) for each process (𝑃 𝑁) to determine180

𝑃(𝐿) =
∑

𝑄 𝑁 (𝐿) · 𝑃 𝑁 . Here 𝐿 could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to 𝑁 𝑁 (𝑂𝐿 |𝐿) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186

𝑁(𝑂𝐿 |𝐿)

𝑁ref(𝑂𝐿)
=

1
𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁

𝑁 𝑁 (𝑂𝐿)

𝑁ref(𝑂𝐿)
, (9)

expressed using only a finite number of 𝐿-independent density ratios, 𝑁 𝑁 (𝑂𝐿)/𝑁ref(𝑂𝐿). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

𝑁ref(𝑂𝐿) =
1∑
𝑂
𝑃𝑂

𝑀signals∑
𝑂

𝑃𝑂 𝑁𝑂 (𝑂𝐿), (10)

2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.
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Figure 1: Leading order Feynman diagrams for the gluon-fusion 66 ! // ! 4✓ processes. The diagrams define the
effective couplings ^ 5 and ^+ used to define the off-shell Higgs boson production signal strengths.

In gluon-fusion (ggF) production of 66 ! // ! 4✓, the signal component is defined at leading-order76

(LO) in perturbation theory by the absolute value squared of the diagram in Fig 1 (a). This contribution77

scales as ^2
5 ^

2
+ . The background component is defined at LO in perturbation theory by the absolute value78

square of the diagram in Fig 1 (b). This component does not scale with ^ 5 nor with ^+ . The interference79

between the two diagrams scales with ^ 5 ^+ . The interference between the two diagrams is negative, as80

required by unitarity conservation [16]. The same concepts can be generalized for the electroweak (EW)81

production of @@̄ ! // + 2 9 ! 4✓ + 2 9 . In this case, the signal scales as ^4
+ , the interference scales as82

^
2
+ , and the background component does not scale. The LO Feynman diagrams for the production of EW83

@@̄ ! // + 2 9 ! 4✓ are shown in Fig 2.84
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Figure 2: Leading order Feynman diagrams for the electroweak @@̄ ! // + 2 9 ! 4✓ + 2 9 processes. The diagrams
define the effective couplings ^+ used to define the off-shell Higgs boson production signal strengths.

The scaling uniquely defines each component in the ggF and EW production of off-shell Higgs bosons. The85

model used to measure the off-shell Higgs boson produced is then defined as a function of two parameters86

of interest:87

`
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EW
off-shell = ^
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where the subscript off-shell indicates that the modifier only affects processes with <� away from the pole88

mass. These signal strengths are used to defined a per-event probability model which is used to interpret89

the collected data. The model is written as:90
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observable in histogram-based signal strength measurements. However, this solution only works for such158

linear problems, and Section 2.2 will develop a more general framework to build a test statistic analytically159

from the output of a few classifiers. The quality of a test statistic is reliant on how well a classifier learns to160

estimate the decision function in Eq. 2. The rest of this section will describe a method to factorise the161

problem of estimating likelihood ratios into a set of simpler estimation tasks and improve the robustness of162

the estimation.163

2.2 Factorisation into a search-oriented mixture model164

When the hypotheses being tested can be decomposed into mixtures of several components, the learning165

task can be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters166

to be measured can be written as coe!cients of the mixture model, the individual classifiers no longer167

need to be parameterised in the parameter(s) of interest (e.g. a signal strength 𝐿), since the relation is168

explicitly known. This reduces the burden of validating the interpolation capabilities of the likelihood169

ratio estimation over the entire theory parameter space, to simply validating the performance of the small170

number of classifiers. If every classifier is well-trained and well-calibrated, then their combination too may171

be expected to remain well-behaved, although this must be explicitly verified.172

For an LHC analysis, this decomposition can use di"erent physics processes that give rise to the same final173

state, each with a coe!cient that is some function of the parameter of interest. If the decomposition is into174

𝑀 di"erent components, representing di"erent physics processes,175

𝑁(𝑂𝐿 |𝐿) =
1

𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁 𝑁 𝑁 (𝑂𝐿), (8)

where 𝑁 𝑁 (𝑂𝐿) is the probability density for the event 𝑂𝐿 correspeonding to the process 𝑅 , and 𝑃 𝑁 the inclusive176

rate for that process are defined with 𝐿 at the Standard Model value. The full dependence on 𝐿 can be177

captured using only the coe!cients 𝑄 𝑁 (𝐿) and the total rate 𝑃(𝐿). Such a decomposition is possible for a178

wide range of LHC analyses where the coe!cients 𝑄 𝑁 (𝐿) are known from theory2 [4]. These coe!cients are179

also used together with the inclusive rates (estimated from simulations) for each process (𝑃 𝑁) to determine180

𝑃(𝐿) =
∑

𝑄 𝑁 (𝐿) · 𝑃 𝑁 . Here 𝐿 could represent multiple theory parameters, and this formalism accommodates181

multiple independent parameters of interest. Further, while the factorisation of the task into individual182

physics processes can always be made, if the dependence on the parameter of interest is not analytically183

known, a parameterised network can be trained instead to estimate terms corresponding to 𝑁 𝑁 (𝑂𝐿 |𝐿) [7] in184

the following formalism. This paper defines a search-oriented mixture model, which is the probability185

density ratio between a hypothesis and a reference,186

𝑁(𝑂𝐿 |𝐿)

𝑁ref(𝑂𝐿)
=

1
𝑃(𝐿)

𝑀∑
𝑁

𝑄 𝑁 (𝐿) · 𝑃 𝑁

𝑁 𝑁 (𝑂𝐿)

𝑁ref(𝑂𝐿)
, (9)

expressed using only a finite number of 𝐿-independent density ratios, 𝑁 𝑁 (𝑂𝐿)/𝑁ref(𝑂𝐿). While there is a187

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,188

𝑁ref(𝑂𝐿) =
1∑
𝑂
𝑃𝑂

𝑀signals∑
𝑂

𝑃𝑂 𝑁𝑂 (𝑂𝐿), (10)

2 Such a decomposition is possible for signal strength measurements but may not be possible for other measurements, such as
mass measurement.
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Open problems to extend to full ATLAS analysis:
• Robustness: Design and validation 
• Systematic Uncertainties: Incorporate them in likelihood (ratio) model 
• Neyman Construction: Throwing toys in a per-event analysis



Validate quality of LR estimation with re-weighting task
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Reweighting: Calculate weights  for events  in blue sample to match green samplewi xi
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Reweighting: Calculate weights  for events  in blue sample to match green samplewi xi

wi = r(xi, μ0, μ1) = p(xi |μ1)
p(xi |μ0)

Already estimated using an ensemble of networks



Figure 1: One-dimensional reweight closure diagnostic with 𝐿4𝐿 and a high-level observable that represents the
squared matrix-element for the 𝑀𝑀 → 𝑁 → 𝑂𝑂 → 4𝑃 process from reconstructed quantities computed using
MCFM [29]. The former is an example diagnostic for an observable directly used in the network training, and the
latter is an example diagnostic of the network’s ability to learn high-level physics observables that are not used
directly for training. The original reference sample (blue, dashed), is reweighted (orange, solid) using the likelihood
ratio estimated with ensembles to match the target (green, dashed). The lower panel shows the ratio between the
reweighted reference sample and the target sample.
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squared matrix-element for the 𝑀𝑀 → 𝑁 → 𝑂𝑂 → 4𝑃 process from reconstructed quantities computed using
MCFM [29]. The former is an example diagnostic for an observable directly used in the network training, and the
latter is an example diagnostic of the network’s ability to learn high-level physics observables that are not used
directly for training. The original reference sample (blue, dashed), is reweighted (orange, solid) using the likelihood
ratio estimated with ensembles to match the target (green, dashed). The lower panel shows the ratio between the
reweighted reference sample and the target sample.
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m4l Matrix-Element-based Observable
(ggF from MCFM)

Target
RW

Source

High-Dim Classifier Test: 
Train independent classifier on RW vs Target, 
AUC=0.5 ⇒ LRs well estimated

Variable used in training High-level variable 
never used in training

ATLAS methods note: CDS 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2024-015/


Calibration curves of probability density ratios
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Figure 7: Comparison between the NN-based and histogram-based estimate of the density ratio 𝐿X (𝑀)/𝐿ref (𝑀) for
(a) 𝑁o!-shell = 0.3 and (b) 𝑁o!-shell = 1.7. The comparison is done as a function of log [𝐿X (𝑀)/𝐿ref (𝑀)] in order to
highlight the events which are very signal-like and reference-like. The lower panels show the pull, defined as the
di!erence between the NN and MC-based estimation divided by the statistical uncertainty coming from the finite
number of MC events. Good calibration is observed throughout the whole signal region.

performed can be found in Ref. [30], and only a summary is given here. Figure 7 compares the NN-based
and histogram-based estimates of the density ratio 𝐿(𝑀 |𝑁o!-shell)/𝐿ref(𝑀) for two high-statistics Asimov
samples2 with signal strengths 𝑁o!-shell = 0.3 and 1.7. These samples validate the NN-based procedure in
a regime that is dominated by the signal-background interference component, and the signal component,
respectively. In both cases, the NNs show excellent probability calibration. Note that the result was
obtained without a NN calibration layer [90].

The probability density ratio 𝐿(𝑀 |𝑁o!-shell)/𝐿ref(𝑀) can be used to reweight distributions from one value
of 𝑁o!-shell to another. The reweighting factor is obtained from the NN-based estimate of the probability
density ratio using:

𝐿(𝑀 |𝑁o!-shell)

𝐿(𝑀 |𝑁o!-shell = 1)
=
(
𝐿(𝑀 |𝑁o!-shell)

𝐿ref(𝑀)

) (
𝐿(𝑀 |𝑁o!-shell = 1)

𝐿ref(𝑀)

)→1
. (12)

Comparisons between distributions estimated directly from an Asimov sample with a known value of
𝑁o!-shell with those obtained through reweighting of an Asimov sample with a di!erent value of 𝑁o!-shell
allows to test for possible bias in di!erent regions of phase space. This test is demonstrated in Figure 8
where histograms of distributions of 𝑂pre(𝑀) obtained from high-statistics Asimov samples with signal
strengths 𝑁o!-shell = 0.3 and 1.7 are compared to the same distributions obtained through reweighting of a
SM (𝑁o!-shell = 1.0) Asimov sample.
2 An Asimov sample [89] for a process X refers to a simulated dataset sampled from a probability distribution 𝐿X (𝑀) with large

enough number of events to have negligible statistical fluctuation. The events are weighted so that the total yield matches the
expected number of events 𝑃X.

17

pμ=1.7(xi)
pref(xi)

ATLAS Higgs width physics analysis note: CDS 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2024-016/


Testing full analysis on samples from different values of μ
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And many more diagnostics (see backup)

where (𝐿, �̂�) are the parameters that maximize the function 𝑁(𝐿, 𝑀) and ̂̂𝑀(𝐿) is the value that conditionally
maximizes the function 𝑁(𝐿, 𝑀) for a given 𝐿:

(𝐿, �̂�) = argmax
𝐿,𝑀

𝑁(𝐿, 𝑀); ̂̂
𝑀(𝐿) = argmax

𝑀
𝑁(𝐿, 𝑀). (17)

Note that the term
∑

events ln(𝑂ref(𝑃)) in the denominator of Eq. 15 cancels in the ratio used to define the
test statistic 𝑄𝐿 since it is independent of any parameter (𝐿, 𝑀). As a closure test, Figure 10 shows the
results of a closure test of the 𝑄𝐿o!-shell test statistic: the estimated value of 𝐿o!-shell for an Asimov sample
with a true value of 𝐿o!-shell for a wide range of 𝐿o!-shell values. Closure is observed for all values of
𝐿o!-shell, within the statistical uncertainty of the simulation samples used. An additional test was performed
replacing the 𝑅𝑅 → 𝑆𝑆 S!"#$% sample for an alternative sample simulated with P&’!"( in the Asimov
sample. The hard scattering ME in both samples is calculated at the same perturbative order in QCD, but
they have di!erent parton shower matching and simulation. Closure of the 𝐿o!-shell MLE is still observed
with the alternative Asimov sample.

Figure 10: Maximum likelihood estimator 𝐿o!-shell for di!erent Asimov pseudo-data with known value of 𝐿truth
o!-shell.

The error bar shows the estimate of the uncertainty from the limited number of MC events in the Asimov dataset,
which is introduced as a spurious signal uncertainty.

A total of 127 NPs are used in the measurement. No significant di!erences between the MLE estimates
�̂�𝑁 and the values of the auxiliary measurements 𝑇𝑁 are observed. A small di!erence between the
MLE estimate of the uncertainty in �̂�𝑁 and 𝑈𝑀,𝑁 is observed for the NP associated with the soft-gluon
resummation uncertainty in 𝑉𝑉 → 𝑆𝑆 → 4𝑊 because its impact in the process normalization is large,
as described in Section 6.3. No other significant di!erences are observed. The observed and expected
values of the profile likelihood ratios 𝑄𝐿o!-shell are shown in Figure 11 as functions of 𝐿o!-shell for a variety
of scenarios, assuming 𝐿o!-shell = 𝑋

2
𝑂,o!-shell𝑋

2
𝑃 ,o!-shell = 𝑋

4
𝑃 ,o!-shell. Figure 11(a) compares the profile

likelihood ratio for the histogram-based [17] and the NSBI-based analyses, and shows the improved
constraints on 𝐿o!-shell obtained with the latter. Additional comparisons with the histogram-based analysis
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Open problems to extend to full ATLAS analysis:
✓ Robustness: Design and validation 
‣ Systematic Uncertainties: Incorporate them in likelihood (ratio) model 
• Neyman Construction: Throwing toys in a per-event analysis
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result of approximations when performing calculations and are also due to parameter free-

dom in phenomenological models that are needed when first-principles calculations are not

possible. The canonical examples for these two types of uncertainties are perturbative

uncertainties from series truncation and fragmentation modeling. For the former, calcu-

lations are truncated at a fixed order in perturbation theory and the result depends on

unphysical scales. These scales are varied typically by factors of two in order to determine

the uncertainty. Fragmentation modeling uncertainties are often evaluated by comparing

two di↵erent models, such as the string model [29, 30] in the Pythia [31, 32] parton shower

Monte Carlo (PSMC) and the cluster model [33, 34] in the Herwig [35, 36] PSMC. These

variations are then interpreted as a one standard deviation uncertainty and combined with

other sources of uncertainty in a final statistical analysis.

We examine the interplay of decorrelation with theory uncertainties. In particular,

we will show that constructing a classifier that is independent of a given theory nuisance

parameter does not mean that the theory uncertainty is zero. Instead, it means that

the only handle to determine the theory uncertainty is eliminated. Figure 1 illustrates the

intuition behind why this might be the case. As concrete examples, we study fragmentation

modeling for Lorentz-boosted W boson jet classification and factorization scale variations

when classifying events as either from W+jets or t-channel single top quark events.

Pythia

Herwig

Sherpa

Next year’s 
generator

Nature

Estimated Uncertainty

Without Decorrelation

Pythia
Herwig

Sherpa

Next year’s 
generator

Nature

Estimated Uncertainty

With Decorrelation

Figure 1. An illustration of the potential impact of training a classifier to be decorrelated to
two-point uncertainties. The distance between Pythia and Herwig is treated as the uncertainty.
Left: Without decorrelation, the uncertainty covers nature even if nature does not lie on the line
connecting Pythia and Herwig. Right: The distance between Pythia and Herwig is reduced
due to the decorrelation requirement, resulting in a smaller estimate of the uncertainty, which no
longer covers nature. These diagrams are meant only to be intuitive illustrations.

This paper is organized as follows. Section 2 briefly introduces existing decorrela-

tion techniques. Numerical examples of both two-point and continuous uncertainties are

provided in Sec. 3. The paper ends with conclusions and outlook in Sec. 4.
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2. Data Augmentation

The network comprises 10 hidden layers, each with 64
nodes, a ReLU activation, and L2 kernel regularizers for
all but the first hidden layer and a final layer with sig-
moid activation. The network was trained with an Adam
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FIG. 7: Distribution of physics variables for three
values of the nuisance parameter which controls the
absolute tau lepton energy scale, z = {0.8, 1, 1.1} for
background processes. a the transverse momentum of
the hadronic ⌧ , b the centrality in � of the missing

transverse energy vector with respect to the hadronic ⌧

and the lepton, c transverse mass of the missing
transverse energy and the lepton.

optimizer [70], BCE loss and a batch size of 4096.
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FIG. 8: Distribution of physics variables for three
values of the nuisance parameter which controls the
absolute tau lepton energy scale, z = {0.8, 1, 1.1} for

signal. a the transverse momentum of the hadronic ⌧ , b
the centrality in � of the missing transverse energy

vector with respect to the hadronic ⌧ and the lepton, c
transverse mass of the missing transverse energy and

the lepton.

Experimental uncertainties:  
Eg. Inaccuracies in the calibration of our detector

Theory uncertainties: 
Eg. Inability to compute QFT to infinite order
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lations are truncated at a fixed order in perturbation theory and the result depends on

unphysical scales. These scales are varied typically by factors of two in order to determine
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variations are then interpreted as a one standard deviation uncertainty and combined with
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connecting Pythia and Herwig. Right: The distance between Pythia and Herwig is reduced
due to the decorrelation requirement, resulting in a smaller estimate of the uncertainty, which no
longer covers nature. These diagrams are meant only to be intuitive illustrations.
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The network comprises 10 hidden layers, each with 64
nodes, a ReLU activation, and L2 kernel regularizers for
all but the first hidden layer and a final layer with sig-
moid activation. The network was trained with an Adam
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FIG. 7: Distribution of physics variables for three
values of the nuisance parameter which controls the
absolute tau lepton energy scale, z = {0.8, 1, 1.1} for
background processes. a the transverse momentum of
the hadronic ⌧ , b the centrality in � of the missing

transverse energy vector with respect to the hadronic ⌧

and the lepton, c transverse mass of the missing
transverse energy and the lepton.

optimizer [70], BCE loss and a batch size of 4096.
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FIG. 8: Distribution of physics variables for three
values of the nuisance parameter which controls the
absolute tau lepton energy scale, z = {0.8, 1, 1.1} for

signal. a the transverse momentum of the hadronic ⌧ , b
the centrality in � of the missing transverse energy

vector with respect to the hadronic ⌧ and the lepton, c
transverse mass of the missing transverse energy and

the lepton.

Experimental uncertainties:  
Eg. Inaccuracies in the calibration of our detector

Theory uncertainties: 
Eg. Inability to compute QFT to infinite order

• We only have simulations at 3 variations of each nuisance parameter  αk α1

α2

https://arxiv.org/abs/2109.08159
https://arxiv.org/abs/2105.08742
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α1

α2

⇒ Combine these traditional interpolation with neural network estimation of per-event likelihood ratios

PROS: This approach avoids the kink (discontinuous first and second derivatives) at ↵ = 0 (see
Fig 6(b-d)), which can cause some difficulties for numerical minimization packages such as Minuit.
This approach ensures that ⌘(↵) � 0 (see Fig 6(c)).

Note: This option is not available in ROOT 5.32.00, but is available for normalization uncertainties
(OverallSys) in the subsequent patch releases. In future releases, this may become the default.
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Fig. 6: Comparison of the three interpolation options for different ⌘
±. (a) ⌘

� = 0.8, ⌘
+ = 1.2, (b) ⌘

� = 1.1,
⌘
+ = 1.5, (c) ⌘

� = 0.2, ⌘
+ = 1.8, and (d) ⌘

� = 0.95, ⌘
+ = 1.5

4.1.6 Consistent Bayesian and Frequentist modeling
The variational estimates ⌘

± and �
± typically correspond to so called “±1� variations” in the source of

the uncertainty. Here we are focusing on the source of the uncertainty, not its affect on rates and shapes.
For instance, we might say that the jet energy scale has a 10% uncertainty. 17 This is common jargon,
but what does it mean? The most common interpretation of this statement is that the uncertain parameter
↵p (eg. the jet energy scale) has a Gaussian distribution. However, this way of thinking is manifestly
Bayesian. If the parameter was estimated from an auxiliary measurement, then it is the PDF for that

17Without loss of generality, we choose to parametrize ↵p such that ↵p = 0 is the nominal value of this parameter, ↵p = ±1
are the “±1� variations”.
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See formula used in backup

https://arxiv.org/abs/1503.07622
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to validate these networks, although they can be less illuminating if the systematic variation is very small397

(leading to 𝐿(𝑀𝐿) → 0.5).398

NSBI not only constructs a more sensitive analysis in the entire phase space of 𝑁, but also in the space of399

𝑂 [33]. As with histogram analyses, it is important to ensure that an NSBI analysis does not overconstrain a400

nuisance parameter. This might indicate that the modelling of the systematic uncertainty is oversimplified401

or the fit is exploiting aspects of the systematic uncertainty model that are not known well, for instance402

in the case of two-point theory uncertainties [34]. Such challenges are often discussed in the context of403

modelmisspecification in ML literature. An analysis of the pulls on the nuisance parameters and impacts404

(described further in Section 5.4), and the use of alternative modelling of the systematic uncertainties (such405

as splitting the nuisance parameter into independent sub-components) can reveal such issues, or the use of406

more recently developed methods to analyse the e!ect of systematic uncertainties [35].407

5.2 The profile log-likelihood ratio408

The full test statistic based on a profile log-likelihood ratio [36] can be constructed from Eq. 16 by409

considering all events in the observed data, adding a Poisson term corresponding to the total rate and410

Gaussian constraint factors for the nuisance parameters. If 𝑃data is the number of events in observed data411

D,412

𝑄full(𝑁, 𝑂 |D)

𝑄ref(D)
= Pois(𝑃data |𝑅(𝑁, 𝑂))

𝑀data∏
𝐿

𝑆(𝑀𝐿 |𝑁, 𝑂)

𝑆ref(𝑀𝐿)

∏
𝑁

Gaus(𝑇𝑁 |𝑂𝑁 , 𝑈𝑁), (17)

where the global observables 𝑇𝑁 and 𝑈𝑁 are the values of the auxiliary measurements and their associated413

uncertainty, which are used to constraint the source of systematic uncertainty associated with the nuisance414

parameter 𝑂𝑁 . 𝑄ref(D) =
∏

𝑀data
𝐿

𝑆ref(𝑀𝐿).415

If the nuisance parameter is unconstrained, the corresponding constraint factor is suppressed. An important416

case of unconstrained nuisance parameters are data-driven normalisation parameters.417

The profiling step involves an unconditional and a conditional maximum likelihood estimation of Eq. 17418

(keeping the dependence on D implicit),419

(𝑁, �̂�) = argmax
𝑂,𝑃

𝑄full(𝑁, 𝑂)

𝑄ref
420

̂̂
𝑂(𝑁) = argmax

𝑃

𝑄full(𝑁, 𝑂)

𝑄ref
.421

Note that since 𝑄ref has been defined without any dependence on 𝑁 or 𝑂, it does not a!ect the position422

of the maxima. The test statistic is constructed by taking the ratio of Eq. 17 at these two points. The423

dependency on 𝑄ref cancels out and the traditional profile log-likelihood ratio is recovered,424

𝑉𝑂 = ↑2 ln

(
𝑄full(𝑁, ̂̂𝑂(𝑁))
𝑄full(𝑁, �̂�)

)
. (18)
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Figure 1: Example of how to include a figure. This works with all sorts of formats, eps,
pdf, png.

You also have the option of using colored text, for example this part in blue, this part
in red and this part in green, before going back to black.
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only, which is why it is useful to have examples of both.
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• If you prefer an enumerated list, see above.
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An additional tool to interpret the results is shown in Figure 7, where the distribution of the per-event
test statsitic, 𝐿𝐿=𝐿→ (𝑀𝑀) = ↑2 log(𝑁(𝑀𝑀 |𝑂→)/𝑁(𝑀𝑀 | �̂�)), is shown as a function of signal strength 𝑃4𝑁 for two
di!erent hypotheses 𝑂

→ and the maximum likelihood estimate �̂� = 1. Events in regions with 𝐿𝐿=𝐿→ > 0
indicate a better compatibility with a 𝑂 = 𝑂

→ hypthesis over a 𝑂 = �̂� hypothesis, while regions with
𝐿𝐿=𝐿→ < 0 indicate less compatibility. However, these one-dimensional distributions marginalise over
the rest of the high-dimensional phase space, and compare only two hypotheses at a time. Therefore, a
single distribution is not su"cient to draw conclusions about the phase space responsible for the enhanced
sensitivity of this high-dimensional analysis.

7.2 Impact of systematic uncertainties

The systematic uncertainties considered in this demonstration are described in Section 3.3, and their impact
is taken into account following the formalism developed in Section 5. The 𝑄 𝑂 (𝑀𝑀 , 𝑅𝑃) term in Eq. 16
accounts for the impact on the shape of the distributions and the 𝑆 𝑂 (𝑅𝑃) term accounts for the impact
on the overall normalisation. The interpolation functions used are described in Appendix A. In the case
of uncertainties that a!ect the normalisation, but not the shape of distributions, the term 𝑄 𝑂 (𝑀𝑀 , 𝑅𝑃) in
Eq. 16 is fixed to 1 over the full range of 𝑅𝑃 . This way, the impact of the nuisance parameter on the test
statistic pertains only to the overall yields but not to the per-event probability density ratios. The profile
(log-)likelihood is shown in Figure 8 and compared to a histogram analysis using the Ofixed observable.
The systematic uncertainties reduce the sensitivity of the measurement, as is expected.

Figure 8: The log-likelihood ratio as a function of signal strength 𝑂, representing only statistical uncertainties (solid
red for NSBI, dashed green for histogram analysis), compared to the profile log-likelihood ratio, representing both
statistical and systematic uncertainties (dotted red for NSBI, dotted green for histogram analysis), evaluated on
Asimov data generated with 𝑂 = 1. The histogram analysis is performed with a fixed observable, log 𝑁𝑄/𝑁(𝑀 |𝑂 = 1).
The two nuisance parameters in this study are described in Section 3.3.
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uncertainty, which are used to constraint the source of systematic uncertainty associated with the nuisance414

parameter 𝑂𝑁 . 𝑄ref(D) =
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𝑆ref(𝑀𝐿).415

If the nuisance parameter is unconstrained, the corresponding constraint factor is suppressed. An important416

case of unconstrained nuisance parameters are data-driven normalisation parameters.417
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of the task into individual physics processes can always be made, if the dependence on the parameter of160

interest is not analytically known, a parameterised network can be trained instead to estimate ? 9 (G8 |\) [4].161

This paper defines a search-oriented mixture model, which is the probability density ratio between a162

hypothesis and a reference,163

?(G8 |\)

?ref(G8)
=

1
a(\)

⇠’
9

5 9 (\) · a 9 ·
? 9 (G8)

?ref(G8)
, (7)

expressed using only a finite number of \-independent density ratios, ? 9 (G8)/?ref(G8). While there is a164

freedom to make any choice for the reference, this paper defines it as a combination of signal processes,165

?ref(G8) =
1Õ
: a:

⇠signals’
:

a: · ?: (G8), (8)

with ⇠signals as the number of signal processes. This definition ensures that the denominators in Eq. 7 have166

support over the entire signal region of an analysis.167

The ? 9 (G8)/?ref(G8) terms are then estimated using classifiers. Here, ?ref is defined to be independent168

of \ which allows the final profile likelihood ratio constructed with this method to be independent of169

?ref (discussed in Section 5). ?ref contributes only as a constant offset towards log ?(G8 |\), which can170

be ignored in the maximisation of the (log-)likelihood. The search-oriented mixture model overcomes171

issues of numerical instability that may arise in alternate mixture model formulations. Additionally, the172

pre-selected region for the analysis must be defined to ensure ?ref(G8) > 0 throught the region. This173

definition of ?ref ensures that no signal-sensitive parts of the phase space need to removed.Further, this174

choice of ?ref also aids in the sample-efficient training of the individual classifiers. Finally, it may be175

convenient to define the reference density such that it can be represented using simulated samples with176

only positive weighted events. This simplifies the procedure to construct confidence intervals, which will177

be described in Section 6.178

2.3 Robust Estimators with Ensembling179

In a traditional analysis where a classifier is employed solely for constructing a sensitive observable, while180

density estimation is performed with a histogram, an imperfect training leads to a suboptimal observable181

and a slightly less sensitive analysis. However, it does not lead to an ill-behaved test statistic, introduce182

inaccuracies in the measured confidence intervals or biases in the maximum likelihood estimate of the183

parameter of interest. This is because the likelihood of event counts per bin in a histogram can be computed184

exactly using the Poisson probability density function. In NSBI, the density ratios are instead estimated185

using networks, and therefore ensuring high quality of these estimates is imperative. Since an individual186

classifier may not perfectly estimate the decision function B(G8), a series of steps is described to ensure187

that the estimator B̂(G8) is well-behaved (as determined by the diagnostic tests described in Sec. 4). One188

possibility is to calibrate B̂(G8) using simulated samples [4]; however, achieving accurate and continuous189

calibration in practice can be technically challenging. Instead, an ensemble of networks may be trained on190

bootstrapped samples of the training data, and their average response used to construct a robust estimation191

of likelihood ratios. The boostrapping can be implimented using Poission purturbations to the event weights192

that correspond to statistical fluctuations [10]. This approach helps account for the variance between193

individual networks, coming from the random initialisation of weights and the statistics of the training194

samples. Examining classifier and ensemble performance across different parts of the observable phase195
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reference figures (see Figure 1).

Figure 1: Example of how to include a figure. This works with all sorts of formats, eps,
pdf, png.

You also have the option of using colored text, for example this part in blue, this part
in red and this part in green, before going back to black.

1. Everyone loves an enumerated list.

2. If you prefer bulleted lists, see below.

Of course there are always use cases for list with enumerations, and lists with bullets
only, which is why it is useful to have examples of both.

• Everyone loves a bulleted list.

• If you prefer an enumerated list, see above.
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Open problems to extend to full ATLAS analysis:
✓ Robustness: Design and validation 
✓ Systematic Uncertainties: Incorporate them in likelihood (ratio) model 
‣ Neyman Construction: Throwing toys in a per-event analysis



Throwing event-level toys
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Traditionally:

Asimov Histogram

Poisson per bin
Poisson per event

NSBI:

Ntoy
i = Poisson(NAsimov

i ) wtoy
i = Poisson(wAsimov

i )

(‘Unweighted’ events, i.e. integer weights)

What if events have negative weights? See backup



Figure 5: A comparison of expected sensitivity of NSBI to a typical histogram-based analysis, not including systematic
uncertainties. The evaluation is performed on an Asimov dataset generated with 𝐿 = 1. The test statistic, the
log-likelihood ratio 𝑀𝐿, is shown as a function of signal strength 𝐿. The 1𝑁 and 2𝑁 confidence bands in grey are
determined for NSBI using the Neyman construction procedure outlined in Section 6.

likelihood fit is performed with it, analogous to what would be done in traditional analysis. The likelihood
ratio is used as the test statistic. This serves as the baseline for comparison of sensitivities to a traditional
analysis using the same data. The improvement from NSBI can be seen in Figure 5.

To demonstrate the power of the parameterisation nature of NSBI, it is also compared to a parameterised
but binned method, which may not always be practical to use in analysis but is useful for this demonstration.
The second method uses an observable that is parameterised in 𝐿,

O𝐿 =
𝑂(𝑃𝑀 |𝐿)

𝑂(𝑃𝑀 |𝐿 = 1)
, (28)

which is subsequently binned and used to perform a Poisson likelihood fit. The log-likelihood ratio is
computed for each value of 𝐿 using a histogram of the corresponding version of O𝐿, similar to the method
described in Ref. [20]. The improvement shown in Figure 6 for O𝐿 over Ofixed illustrates the power of a
parameterised method. The traditional analysis (with the fixed observable) exhibits two prominent minima,
which is typical in analyses with non-linear e!ects from, for example, quantum interference. However, the
minimum at the incorrect value of 𝐿 is far less prominent for the analysis using a parameterised observable.
Since the observable is optimised for each value of the parameter of interest, the method is able to more
confidently reject the incorrect values of 𝐿. The further improvement coming from NSBI is due to the
unbinned nature of the method. As the number of bins increases, O𝐿 can approach the sensitivity of NSBI;
however, this may introduce numerical instability, requiring careful bin width optimisation, and make
su"ciently fine binning untenable across the full range of 𝐿. If the number of bins in a histogram-based
analysis is limited by statistics, then leveraging the power of unbinned fits may be desirable.
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Confidence belts

38

Similar to structure seen in histogram analysis
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Why does NSBI work better than traditional analyses?



Figure 6: A comparison of expected sensitivity from various analysis strategies using the log-likelihood ratio test
statistic 𝐿𝐿, as a function of 𝑀. The evaluation is performed on an Asimov dataset generated with 𝑀 = 1. The
red curve represents NSBI. The green curve represents a typical histogram analysis that uses a fixed observable,
log 𝑁𝑀/𝑁(𝑂 |𝑀 = 1), as a discriminant, with 15 bins. The markers show the sensitivity for various histogram analyses
that use specific discriminants, 𝑁(𝑂𝑁 |𝑀)/𝑁(𝑂𝑁 |𝑀 = 1), for specific values of 𝑀(= 0.0, 0.05, 0.15, 1.9), with 15 (green
pluses), 20 (yellow crosses), 30 (orange stars) or 90 (red dots) bins. The improved sensitivity of the green dots over
the green curve (both using 15 bins) is due to the use of a parameterised observable.

Figure 7: The sum of log density-ratio →2 log(𝑁(𝑂𝑁 |𝑀↑)/𝑁(𝑂𝑁 | �̂�)) for events in bins of 𝑃4𝑂 , for a hypothesis 𝑀↑ = 0.5
(left) or a hypothesis 𝑀↑ = 1.5 (right), with �̂� = 1 as the maximum likelihood estimate on an Asimov dataset generated
at 𝑀 = 1. Events in regions with 𝐿𝐿=𝐿↑ > 0 are collectively more consistent with a 𝑀 = 𝑀

↑ hypthesis over a 𝑀 = �̂�

hypothesis, while regions with 𝐿𝐿=𝐿↑ < 0 are collectively less consistent. The very high mass region (𝑃4𝑂 > 1000
GeV) is equally consistent with both hypotheses and provides no additional sensitivity.
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Why does it work better than traditional analyses?

40

: Similar to histogram analysisOfixed = log
pS(xi)

pSBI(xi)

NSBI: Parameterised, unbinned
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Why does it work better than traditional analyses?

40

: Similar to histogram analysisOfixed = log
pS(xi)

pSBI(xi)

: Parameterised observable, histogram fitOμ =
p(xi |μ)

p(xi |μ = 1)

Significant improvement in QI impacted region

 approaches NSBI as Oμ nBins → ∞

NSBI: Parameterised, unbinned



Results on data

41

(a) (b)

Figure 11: (a) Values of the test statistic 𝐿𝐿o!-shell assuming a single parameter of interest 𝑀o!-shell obtained with an
Asimov dataset (expected, dashed black) and with data (observed, solid black) in the 𝑁

→
↑ 𝑂𝑂 ↑ 4𝑃 decay channel.

The values from the histogram-based analysis [17] are added in blue for comparison. The dotted lines show the NC
of the 68% and 95% confidence intervals. (b) Same values obtained with data (observed, solid black) and Asimov
dataset (expected, dashed black) compared to the statistics-only case with all NP fixed at their best-fit values �̂�.

Figure 12: Expected distribution of 𝐿𝐿o!-shell=0 estimated with pseudo-experiments for the case of 𝑀truth
o!-shell = 0 (solid

green, no o!-shell Higgs boson production hypothesis) and 𝑀
truth
o!-shell = 1 (dashed-dotted red, SM hypothesis). The

vertical solid black (dashed blue) line shows the observed (expected) value of 𝐿𝐿o!-shell=0 . The dotted vertical gray
lines represent the 1𝑅 and 2𝑅 significance thresholds. The evidence for o!-shell Higgs boson production has a
significance of 2.5𝑅 using the 𝑁

→
↑ 𝑂𝑂 ↑ 4𝑃 decay channel only.
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NSBI vs histogram analysis Stat vs Stat+Syst

Observed data happens to provide stronger than 
expected constrains for both hist and NSBI (consistent)

Nuisance parameters decrease sensitivity, as expected
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Image: Source

http://www.vecteezy.com


Neutron Stars: What’s going on inside?
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Chandra Telescope
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Telescope measurements of energy spectra of neutron stars

Figure from Lattimer J. M., Prakash M., 2001, The Astrophysical Journal, 550, 426–442

Mass-radius curves created by different equation of state  
(EoS) models 

Horizontal bars show massive neutron star observations used 
to “rule out” EoS models. 

Two communities:  
• Astrophysicists measure mass/radius from telescope 
• Nuclear theorists measure EoS from mass/radius
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Telescope measurements of energy spectra

7

FIG. 3: Examples of training data. Top, 100 samples in
EOS spectral parameter space (�1,�2) randomly

selected from the full set of 10,000 EOS spectral pairs.
Bottom, neutron star mass-radius curves determined by

the selected EOS parameters.

these values is a leading source of uncertainty in the in-
ference of mass and radius, and hence EOS.

Using Table 1 in Ref. [45] as a guide, we find that
distances typically range between 2 and 10 kpc, and hy-
drogen columns lie between 0.2 and 5⇥1021 cm�2. While
neutron stars with larger distances and larger hydrogen
columns exist, they are su�ciently distant as to be dif-
ficult to obtain spectral information. From Table 3 in
Ref. [65], e↵ective temperatures at the surface typically
lie between 50 and 200 eV, or from 6⇥105 and 2.4⇥106 K.
Note that core temperatures are typically a few orders of
magnitude larger. Again colder neutron stars most cer-
tainly exist but are more di�cult to observe.

Examples of generated spectra for varying stellar pa-
rameters are shown in Figure 4. The generated spectra
are very sensitive to the e↵ective surface temperature,
with lesser sensitivity to other parameters. The depen-
dence of the curves in Figure 4 to the changing nuisance
parameters is not surprising: roughly proportional to ra-
dius and distance squared, but higher power in temper-
ature.

The networks detailed below provide estimates of ei-

FIG. 4: Examples of simulated stellar spectra expected
for several values of stellar parameters. Each pane
shows the expected rate of photons in Chandra per

energy bin, for variations of the parameters of interest
(mass M, radius R) as well as for variations of the
nuisance parameters (NH , log(Te↵), distance). The

dashed black line has the same parameters in each pane.
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Probe the interior:  
Equation of State parameters 

λ1, λ2
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Traditional method: Two-step inference
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FIG. 1: Overview of the regression task, which involves either inferring stellar summary quantities such as mass and
radius, which can then be used to deduce the equation of state as in earlier work [18–21] or inference of EOS directly

from stellar spectra, as is demonstrated in this study.

physics, often increasing the statistical power of di�cult-
to-collect data [23] while allowing robust handling of un-
certainties [24]. Where earlier neural networks were lim-
ited in size, computing progress especially in the form
of Graphical Processing Units (GPUs), has enabled the
deployment of larger and deeper networks that can han-
dle more complex and higher-dimensional data [25, 26],
allowing direct analysis of data without requiring dimen-
sional reduction, or other preprocessing steps, that can
often sacrifice useful information. The full power of these
techniques has not yet been brought to bear on many as-
trophysical tasks.

In the context of the inference of neutron star EOS,
recent work by Fujimoto et al. [18, 19] demonstrated the
ability of deep networks to regress the EOS directly from
a set of stellar mass-radius pairs, without the need to
extract the functional relationship between mass and ra-
dius. Their analysis used a toy model to describe the
uncertainties in mass and radius, assuming uncorrelated
Gaussian errors randomly drawn from ad-hoc priors.
Real measurements, of course, do not often obey these
simplifying assumptions, and show complex correlations
between mass and radius [27]. Related work [20] has
demonstrated similar regression, again assuming Gaus-
sian uncertainty on mass and radius values, but with
clever e↵orts to reduce dependence on EOS parameter-
ization. An alternative approach [21] uses both neural
networks and support vector machines to regress the EOS
from stellar radii and tidal deformations.

More realistic characterization of the uncertainties in
the mass-radius plane can be extracted using the state-

of-the-art tool xspec [28], which assumes a theoretical
model for the star and telescope response, allowing for
explicit calculation of the likelihood of telescope spectra
for various mass and radius values. The likelihood can
be used in the standard way to extract best-estimates
and uncertainty contours of any shape in the mass-radius
plane. However, these complex mass-radius likelihoods
cannot be trivially incorporated into the existing EOS
inference schemes, motivating the simplifying assump-
tions of uncorrelation normal distributions which can be
described by two width values. An additional concern
is that xspec’s contours rely on the simplifying assump-
tions of the theoretical model.

What has received less attention in the literature are
likelihood-free methods to infer the EOS directly from
the telescope spectra, without the intermediate stepping
stone of the mass-radius determination and the chal-
lenges of its representation. This would allow for the full
propagation of realistic uncertainties and the relaxation
of assumptions about the theoretical model.

In this paper, we present a technique of EOS infer-
ence which allows for the full propagation of the uncer-
tainties in the X-ray spectra, without making simplify-
ing assumptions about the shape of the contours in the
mass-radius plane. We proceed in three steps, begin-
ning from an approach similar to the state of the art but
with realistic uncertainty propagation, and moving to-
wards end-to-end infererence. In the first step, our neu-
ral network model infers the neutron star EOS from a
set of stellar masses and radii extracted from xspec, but
rather than making simplifying assumptions or extract-

JCAP.020P.0922: Delaney Farrell, Pierre Baldi, Jordan Ott, Aishik Ghosh, Andrew W. Steiner, Atharva Kavitkar, Lee Lindblom, Daniel Whiteson, Fridolin Weber

Astrophysicists Nuclear theorists Neutron star in sky

https://arxiv.org/abs/2209.02817
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JCAP.020P.0922: Delaney Farrell, Pierre Baldi, Jordan Ott, Aishik Ghosh, Andrew W. Steiner, Atharva Kavitkar, Lee Lindblom, Daniel Whiteson, Fridolin Weber

Astrophysicists Nuclear theorists 

Leak some information on uncertainties in the handover

Neutron star in sky

https://arxiv.org/abs/2209.02817
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tainties in the X-ray spectra, without making simplify-
ing assumptions about the shape of the contours in the
mass-radius plane. We proceed in three steps, begin-
ning from an approach similar to the state of the art but
with realistic uncertainty propagation, and moving to-
wards end-to-end infererence. In the first step, our neu-
ral network model infers the neutron star EOS from a
set of stellar masses and radii extracted from xspec, but
rather than making simplifying assumptions or extract-
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Traditional method: Two-step inference
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FIG. 1: Overview of the regression task, which involves either inferring stellar summary quantities such as mass and
radius, which can then be used to deduce the equation of state as in earlier work [18–21] or inference of EOS directly

from stellar spectra, as is demonstrated in this study.

physics, often increasing the statistical power of di�cult-
to-collect data [23] while allowing robust handling of un-
certainties [24]. Where earlier neural networks were lim-
ited in size, computing progress especially in the form
of Graphical Processing Units (GPUs), has enabled the
deployment of larger and deeper networks that can han-
dle more complex and higher-dimensional data [25, 26],
allowing direct analysis of data without requiring dimen-
sional reduction, or other preprocessing steps, that can
often sacrifice useful information. The full power of these
techniques has not yet been brought to bear on many as-
trophysical tasks.

In the context of the inference of neutron star EOS,
recent work by Fujimoto et al. [18, 19] demonstrated the
ability of deep networks to regress the EOS directly from
a set of stellar mass-radius pairs, without the need to
extract the functional relationship between mass and ra-
dius. Their analysis used a toy model to describe the
uncertainties in mass and radius, assuming uncorrelated
Gaussian errors randomly drawn from ad-hoc priors.
Real measurements, of course, do not often obey these
simplifying assumptions, and show complex correlations
between mass and radius [27]. Related work [20] has
demonstrated similar regression, again assuming Gaus-
sian uncertainty on mass and radius values, but with
clever e↵orts to reduce dependence on EOS parameter-
ization. An alternative approach [21] uses both neural
networks and support vector machines to regress the EOS
from stellar radii and tidal deformations.

More realistic characterization of the uncertainties in
the mass-radius plane can be extracted using the state-

of-the-art tool xspec [28], which assumes a theoretical
model for the star and telescope response, allowing for
explicit calculation of the likelihood of telescope spectra
for various mass and radius values. The likelihood can
be used in the standard way to extract best-estimates
and uncertainty contours of any shape in the mass-radius
plane. However, these complex mass-radius likelihoods
cannot be trivially incorporated into the existing EOS
inference schemes, motivating the simplifying assump-
tions of uncorrelation normal distributions which can be
described by two width values. An additional concern
is that xspec’s contours rely on the simplifying assump-
tions of the theoretical model.

What has received less attention in the literature are
likelihood-free methods to infer the EOS directly from
the telescope spectra, without the intermediate stepping
stone of the mass-radius determination and the chal-
lenges of its representation. This would allow for the full
propagation of realistic uncertainties and the relaxation
of assumptions about the theoretical model.

In this paper, we present a technique of EOS infer-
ence which allows for the full propagation of the uncer-
tainties in the X-ray spectra, without making simplify-
ing assumptions about the shape of the contours in the
mass-radius plane. We proceed in three steps, begin-
ning from an approach similar to the state of the art but
with realistic uncertainty propagation, and moving to-
wards end-to-end infererence. In the first step, our neu-
ral network model infers the neutron star EOS from a
set of stellar masses and radii extracted from xspec, but
rather than making simplifying assumptions or extract-

SOTA collapsed information into 2 numbers + assumed uncorrelated Gaussian 
uncertainties 

Real uncertainties look quite different
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FIG. 14: Estimation of the mass and radius of a
neutron star from the underlying stellar spectra, by
MR Net . Each pane represents one star, and shown
(green) are estimates for several independent values of
the nuisance parameters drawn from the associated
priors, and the mean value (red). Top two cases have

loose priors, bottom two have tight. The dashed ellipse,
whose widths are set to the standard deviation of the
mass and radius estimates, is a demonstration of the

inadequacy of a simple uncertainty model.

FIG. 15: Neural network regression of the EOS
parameters �1 and �2 of a set of 10 neutron stars from

from their masses and radii as estimated by
MR Net from each stars spectrum. Each pane

represents an example dataset of 10 simulated stars,
and shown (green) are EOS estimates for several

independent values of the stellar nuisance parameters
drawn from the associated priors, and the mean value

(red). Top two cases have loose priors, bottom two have
tight.

16

FIG. 14: Estimation of the mass and radius of a
neutron star from the underlying stellar spectra, by
MR Net . Each pane represents one star, and shown
(green) are estimates for several independent values of
the nuisance parameters drawn from the associated
priors, and the mean value (red). Top two cases have

loose priors, bottom two have tight. The dashed ellipse,
whose widths are set to the standard deviation of the
mass and radius estimates, is a demonstration of the

inadequacy of a simple uncertainty model.

FIG. 15: Neural network regression of the EOS
parameters �1 and �2 of a set of 10 neutron stars from

from their masses and radii as estimated by
MR Net from each stars spectrum. Each pane

represents an example dataset of 10 simulated stars,
and shown (green) are EOS estimates for several

independent values of the stellar nuisance parameters
drawn from the associated priors, and the mean value

(red). Top two cases have loose priors, bottom two have
tight.

JCAP.020P.0922: Delaney Farrell, Pierre Baldi, Jordan Ott, Aishik Ghosh, Andrew W. Steiner, Atharva Kavitkar, Lee Lindblom, Daniel Whiteson, Fridolin Weber

NPs

Astrophysicists Nuclear theorists 

Leak some information on uncertainties in the handover

Neutron star in sky

https://arxiv.org/abs/2209.02817


Inferring neutron star EoS parameters with NSBI

48

13

FIG. 7: Scans of the likelihood for two example sets of stellar spectra s (left, right) versus EOS parameters �1 and
�2. Top demonstrates the ideal nuisance parameter (NP) conditions where the NPs are fixed to their true values.
For the same specra, center shows a more realistic “tight” scenario in which uncertainty has be integrated out, and

bottom shows a “loose” scenario in which the NPs are not well constrained by priors.

In the case of M ,R-estimation for an individual star, the performance of the ML-Likelihood method matches the
performance of xspec when the nuisance parameters are known. This is an important validation of the technique,
as the simulated samples are generated by xspec and so its internal likelihood estimation represents something
of an upper bound on possible performance. Though xspec can provide point estimates and other analysis, ML-
Likelihood in this case is valuable as a building block for further analysis, as xspec does not provide an e�cient
interface to its internal calculations. For example, in the cases where nuisance parameters weaken the inference,
ML-Likelihood is able to improve on xspec ’s performance by marginalizing over the stellar nuisance parameters.
Given access to the full likelihood, one could also choose to profile over the nuisance parameters. In addition, while
xspec ’s inference is linked to a particular theoretical model, ML-Likelihood can be trained on a variety or mixture
of models, providing a smooth interpolation between otherwise distinct conceptual approaches [49].

The M,R-likelihood estimation is a building block toward the the estimation of EOS parameters for sets of stars.
In this case, as well, the likelihood provides for reliable inference of the EOS parameters. The residuals in this case
again are narrower than the pure regression approach, nearly matching the performance of xspec in the true case,
and exceeding it in the realistic case where nuisance parameter uncertainty is important.

The neural networks developed for this work enable end-to-end, fast simulation of neutron star spectra for a range
of EOS parameters and nuisance parameters, including the intermediate step of generating plausible neutron star

Direct estimation of likelihood from high-dimensional raw data allows 
more reliable uncertainty propagation and better measurements!
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FIG. 1: Overview of the regression task, which involves either inferring stellar summary quantities such as mass and
radius, which can then be used to deduce the equation of state as in earlier work [18–21] or inference of EOS directly

from stellar spectra, as is demonstrated in this study.

physics, often increasing the statistical power of di�cult-
to-collect data [23] while allowing robust handling of un-
certainties [24]. Where earlier neural networks were lim-
ited in size, computing progress especially in the form
of Graphical Processing Units (GPUs), has enabled the
deployment of larger and deeper networks that can han-
dle more complex and higher-dimensional data [25, 26],
allowing direct analysis of data without requiring dimen-
sional reduction, or other preprocessing steps, that can
often sacrifice useful information. The full power of these
techniques has not yet been brought to bear on many as-
trophysical tasks.

In the context of the inference of neutron star EOS,
recent work by Fujimoto et al. [18, 19] demonstrated the
ability of deep networks to regress the EOS directly from
a set of stellar mass-radius pairs, without the need to
extract the functional relationship between mass and ra-
dius. Their analysis used a toy model to describe the
uncertainties in mass and radius, assuming uncorrelated
Gaussian errors randomly drawn from ad-hoc priors.
Real measurements, of course, do not often obey these
simplifying assumptions, and show complex correlations
between mass and radius [27]. Related work [20] has
demonstrated similar regression, again assuming Gaus-
sian uncertainty on mass and radius values, but with
clever e↵orts to reduce dependence on EOS parameter-
ization. An alternative approach [21] uses both neural
networks and support vector machines to regress the EOS
from stellar radii and tidal deformations.

More realistic characterization of the uncertainties in
the mass-radius plane can be extracted using the state-

of-the-art tool xspec [28], which assumes a theoretical
model for the star and telescope response, allowing for
explicit calculation of the likelihood of telescope spectra
for various mass and radius values. The likelihood can
be used in the standard way to extract best-estimates
and uncertainty contours of any shape in the mass-radius
plane. However, these complex mass-radius likelihoods
cannot be trivially incorporated into the existing EOS
inference schemes, motivating the simplifying assump-
tions of uncorrelation normal distributions which can be
described by two width values. An additional concern
is that xspec’s contours rely on the simplifying assump-
tions of the theoretical model.

What has received less attention in the literature are
likelihood-free methods to infer the EOS directly from
the telescope spectra, without the intermediate stepping
stone of the mass-radius determination and the chal-
lenges of its representation. This would allow for the full
propagation of realistic uncertainties and the relaxation
of assumptions about the theoretical model.

In this paper, we present a technique of EOS infer-
ence which allows for the full propagation of the uncer-
tainties in the X-ray spectra, without making simplify-
ing assumptions about the shape of the contours in the
mass-radius plane. We proceed in three steps, begin-
ning from an approach similar to the state of the art but
with realistic uncertainty propagation, and moving to-
wards end-to-end infererence. In the first step, our neu-
ral network model infers the neutron star EOS from a
set of stellar masses and radii extracted from xspec, but
rather than making simplifying assumptions or extract-
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Meaningful posteriors, most sensitive method !

8

credible bands for the pressure as a function of energy density as depicted in Fig. 3. As before, the constraints are
much tighter in the true scenario and become increasingly broader in the tight and loose cases. By solving the TOV
equations, we can translate the EoS into mass-radius constraints. The 95% posterior credible bands for the radius
as a function of mass are depicted in Fig. 3. The credible bands terminate at the 95% upper limits of the maximum
mass. Focusing only on the tight case in Fig. 4, there is a very close agreement of the inferred median for P (") and
R(M) to the ground-truth values.
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FIG. 3: Posterior 95% (highest density) credible bands for the pressure as a function of energy density and the
radius as a function of mass for the three (true, tight, loose) scenarios. Similar to Fig. 2, the posterior is derived

based on the simulated spectra of 10 stars. The ground-truth value for the equation of state and the corresponding
mass-radius relation is depicted as a dashed black line. Black dots indicate ground-truth mass-radius values of the

10 simulated stars.
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FIG. 4: Median as well as 68% and 95% posterior credible bands for the pressure as a function of energy density and
the radius as a function of mass for the tight scenario. The ground-truth value for the equation of state and the

corresponding mass-radius relation is depicted as a dashed black line. Black dots indicate the mass-radius values of
the 10 simulated stars.

B. Increasing the number of observations

With an anticipated surge in the number of available neutron star observations in the upcoming years, the inference
method must be able to scale to a large set of data. In our approach, normalizing flows approximate the likelihood
p(s|�, ⌫) per observed star. These likelihoods are then combined to obtain the total likelihood for a set of neutron
stars, see Eq. (6). Consequently, the method does not need to assume a fixed number of observed neutron stars, nor a

Bayesian Posteriors and credible intervals 
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Enhanced Interpretability: Effect of nuisance parameters
7
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FIG. 2: Corner plot depicting the posterior distribution of the parameters �1 and �2 of one example EoS as well as

the first 3 (of 30) nuisance parameters N
(1)

H
, d(1) and log(Te↵)(1). The posterior is computed based on the simulated

spectra of 10 stars with the nuisance parameters known exactly in the true scenario (green), and known with the
uncertainties in Tab. II in the tight (orange) and loose (blue) scenarios. The ground-truth parameter values are

depicted as black crosses/lines. The marginal posterior distributions of the nuisance parameters are compared to the
respective priors (dotted) of the tight and loose scenarios.

As expected, in the true scenario where the nuisance parameters are exactly known, the marginal posterior distri-
butions are sharply centered around the ground-truth values. In the tight scenario, the uncertainty in the nuisance
parameters distributions leads to wider distributions for the EoS parameters. This is further pronounced for the loose
case, where less prior information on the nuisance parameters is available. Fig. 2 illustrates that the hydrogen column
NH as well as the logarithm of the e↵ective surface temperature log(Te↵) can be significantly constrained from the
spectrum data compared to their prior ranges. In the tight scenario, the marginal posterior for the distance d is
almost indistinguishable from the prior, indicating that the telescope spectra do not contribute any more information
for this parameter over the tight priors. However, in the loose case, the marginal posterior distribution of d becomes
tighter than the loose prior, which implies that we can indeed extract information about the distance of a neutron
star from its X-ray spectrum.

We can transform the posterior distribution for the EoS parameters �1 and �2 into 95% (highest density) posterior

Only possible to visualise these due to the fast and differentiable 
likelihood from networks
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depicted as black crosses/lines. The marginal posterior distributions of the nuisance parameters are compared to the
respective priors (dotted) of the tight and loose scenarios.

As expected, in the true scenario where the nuisance parameters are exactly known, the marginal posterior distri-
butions are sharply centered around the ground-truth values. In the tight scenario, the uncertainty in the nuisance
parameters distributions leads to wider distributions for the EoS parameters. This is further pronounced for the loose
case, where less prior information on the nuisance parameters is available. Fig. 2 illustrates that the hydrogen column
NH as well as the logarithm of the e↵ective surface temperature log(Te↵) can be significantly constrained from the
spectrum data compared to their prior ranges. In the tight scenario, the marginal posterior for the distance d is
almost indistinguishable from the prior, indicating that the telescope spectra do not contribute any more information
for this parameter over the tight priors. However, in the loose case, the marginal posterior distribution of d becomes
tighter than the loose prior, which implies that we can indeed extract information about the distance of a neutron
star from its X-ray spectrum.

We can transform the posterior distribution for the EoS parameters �1 and �2 into 95% (highest density) posterior

Prior knowledge on nuisance parameters
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Conclusion

• Quantum interference breaks assumptions in traditional statistical methods 
at LHC 

• Neural inference can optimally handle these challenges for Higgs width: 
• Shown in phenomenology study 
• Developed method for deployment in ATLAS 
• Re-analysed Run 2 data and achieved a dramatic improvement in 

sensitivity ( ) 

• NSBI has wide-ranging applications, in particle physics, astrophysics and 
beyond! 

• Weaknesses: Same as traditional analyses (systematics, training statistics). 
Developed diagnostic tools to help

H → 4l

“Neural Simulation-Based Inference”

7
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The neural inference framework:

Traditional framework:

Statistical	
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The normalisations of the ,/ , / + jets and non-resonant-✓✓ backgrounds are also obtained from
the simultaneous fit, using the dedicated control regions described in Section 6. Similarly to the
@@̄ ! // background, events from the ,/ process are treated separately for each jet multiplicity. Five
additional free parameters, `3✓ , `1 9

3✓ , `
2 9
3✓ , `/ 9 , and `4`, are therefore introduced in the likelihood model

specifically for the 2✓2a channel and for its combination with the 4✓ channel.

The likelihood function for the combination of both channels is built as a product of the likelihoods of
the individual channels. Theoretical and experimental uncertainties with common sources are treated
as correlated between the two channels. The NLO EW uncertainty is uncorrelated between the two
channels, due to the different schemes used to derive the uncertainties. The hypothesis of systematic
uncertainty correlation between the 4✓ and 2✓2a channels is tested for the dominant sources of uncertainties,
including the PS uncertainties that use models with different complexity in the two channels, and the NLO
EW uncertainty. The difference in the result when using different correlation hypotheses is found to be
negligible.

The <4✓ distribution for the 4✓ channel and the <//

T distribution for the 2✓2a channel are shown in Figure 5
after the full fit to data with `off-shell = 1. The total systematic uncertainty from the sources described in
Section 7 are shown in the figure. The distributions of the NN observables used in the 4✓ channel are
shown in Figure 3.
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Figure 5: Comparisons between data and the SM prediction for the (a) <4✓ and (b) <//

T distributions in the inclusive
off-shell signal regions in the // ! 4✓ and // ! 2✓2a channels, respectively. The scenario with the off-shell
signal strength equal to one is considered in the fit. The hatched area represents the total systematic uncertainty. The
last bin in both figures contains the overflow.

The expected numbers of events in the SRs after the maximum-likelihood fit to the data performed in
all SRs and CRs, together with the corresponding observed yields, are shown in Tables 2 and 3 for the
// ! 4✓ and // ! 2✓2a channels, respectively. The fitted background normalisation factors together
with their total uncertainties are summarized in Table 4.

To obtain the results for a given parameter of interest, profile likelihood ratios (denoted by _) are computed
for different values of each parameter. The �2 ln_ curve as a function of `off-shell is presented in Figure 6(a).
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Thanks !
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http://aishikghoshoffice@gmail.com


Non-linear problem

53

CHAPTER 2. THEORETICAL OVERVIEW

where �g,o�-shell(ŝ) and �V,o�-shell(ŝ) are the o�-shell coupling scale factors associated with the gg � H�

production and the H� � VV decay. Due to the statistically limited sensitivity of the current analysis,
the o�-shell signal strength and coupling scale factors are assumed in the following to be independent
of ŝ in the high-mass region selected by the analysis. The o�-shell Higgs boson signal cannot be treated
independently from the gg � VV background, as sizeable negative interference e�ects appear [7]. The
interference term is proportional to �µo�-shell = �g,o�-shell · �V,o�-shell.
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Figure 1: The leading-order Feynman diagrams for (a) the gg � H� � VV signal, (b) the continuum gg � VV
background and (c) the qq̄� VV background.

In contrast, the cross-section for on-shell Higgs boson production allows a measurement of the signal
strength:

µon-shell �
�gg�H�VV

on-shell

�gg�H�VV
on-shell, SM

=
�2g,on-shell · �2V,on-shell

�H/�SM
H

, (2)

which depends on the total width �H . Assuming identical on-shell and o�-shell Higgs boson coupling
scale factors, the ratio of µo�-shell to µon-shell provides a measurement of the total width of the Higgs boson.
This assumption is particularly relevant to the running of the e�ective coupling �g(ŝ) for the loop-induced
gg � H production process, as it is sensitive to new physics that enters at higher mass scales and could
be probed in the high-mass mVV signal region of this analysis. More details are given in Refs. [12–16].
With the current sensitivity of the analysis, only an upper limit on the total width �H can be determined,
for which the weaker assumption

�2g,on-shell · �2V,on-shell � �2g,o�-shell · �2V,o�-shell , (3)

that the on-shell couplings are no larger than the o�-shell couplings, is su�cient. It is also assumed
that any new physics which modifies the o�-shell signal strength µo�-shell and the o�-shell couplings
�i,o�-shell does not modify the predictions for the backgrounds. Further, neither are there sizeable kinematic
modifications to the o�-shell signal nor new, sizeable signals in the search region of this analysis unrelated
to an enhanced o�-shell signal strength [18, 24].

While higher-order quantum chromodynamics (QCD) and electroweak (EW) corrections are known for
the o�-shell signal process gg � H� � ZZ [25], which are also applicable to gg � H� � WW, no
higher-order QCD calculations are available for the gg� VV background process, which is evaluated at
leading order (LO). Therefore the results are given as a function of the unknown K-factor for the gg� VV
background. QCD corrections for the o�-shell signal processes have only been calculated inclusively in
the jet multiplicity. The experimental analyses are therefore performed inclusively in jet observables and,
the event selections are designed to minimise the dependence on the boost of the VV system, which is
sensitive to the jet multiplicity.
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In contrast, the cross-section for on-shell Higgs boson production allows a measurement of the signal
strength:

µon-shell �
�gg�H�VV

on-shell

�gg�H�VV
on-shell, SM

=
�2g,on-shell · �2V,on-shell

�H/�SM
H
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which depends on the total width �H . Assuming identical on-shell and o�-shell Higgs boson coupling
scale factors, the ratio of µo�-shell to µon-shell provides a measurement of the total width of the Higgs boson.
This assumption is particularly relevant to the running of the e�ective coupling �g(ŝ) for the loop-induced
gg � H production process, as it is sensitive to new physics that enters at higher mass scales and could
be probed in the high-mass mVV signal region of this analysis. More details are given in Refs. [12–16].
With the current sensitivity of the analysis, only an upper limit on the total width �H can be determined,
for which the weaker assumption

�2g,on-shell · �2V,on-shell � �2g,o�-shell · �2V,o�-shell , (3)

that the on-shell couplings are no larger than the o�-shell couplings, is su�cient. It is also assumed
that any new physics which modifies the o�-shell signal strength µo�-shell and the o�-shell couplings
�i,o�-shell does not modify the predictions for the backgrounds. Further, neither are there sizeable kinematic
modifications to the o�-shell signal nor new, sizeable signals in the search region of this analysis unrelated
to an enhanced o�-shell signal strength [18, 24].

While higher-order quantum chromodynamics (QCD) and electroweak (EW) corrections are known for
the o�-shell signal process gg � H� � ZZ [25], which are also applicable to gg � H� � WW, no
higher-order QCD calculations are available for the gg� VV background process, which is evaluated at
leading order (LO). Therefore the results are given as a function of the unknown K-factor for the gg� VV
background. QCD corrections for the o�-shell signal processes have only been calculated inclusively in
the jet multiplicity. The experimental analyses are therefore performed inclusively in jet observables and,
the event selections are designed to minimise the dependence on the boost of the VV system, which is
sensitive to the jet multiplicity.
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production and the H� � VV decay. Due to the statistically limited sensitivity of the current analysis,
the o�-shell signal strength and coupling scale factors are assumed in the following to be independent
of ŝ in the high-mass region selected by the analysis. The o�-shell Higgs boson signal cannot be treated
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which depends on the total width �H . Assuming identical on-shell and o�-shell Higgs boson coupling
scale factors, the ratio of µo�-shell to µon-shell provides a measurement of the total width of the Higgs boson.
This assumption is particularly relevant to the running of the e�ective coupling �g(ŝ) for the loop-induced
gg � H production process, as it is sensitive to new physics that enters at higher mass scales and could
be probed in the high-mass mVV signal region of this analysis. More details are given in Refs. [12–16].
With the current sensitivity of the analysis, only an upper limit on the total width �H can be determined,
for which the weaker assumption

�2g,on-shell · �2V,on-shell � �2g,o�-shell · �2V,o�-shell , (3)

that the on-shell couplings are no larger than the o�-shell couplings, is su�cient. It is also assumed
that any new physics which modifies the o�-shell signal strength µo�-shell and the o�-shell couplings
�i,o�-shell does not modify the predictions for the backgrounds. Further, neither are there sizeable kinematic
modifications to the o�-shell signal nor new, sizeable signals in the search region of this analysis unrelated
to an enhanced o�-shell signal strength [18, 24].

While higher-order quantum chromodynamics (QCD) and electroweak (EW) corrections are known for
the o�-shell signal process gg � H� � ZZ [25], which are also applicable to gg � H� � WW, no
higher-order QCD calculations are available for the gg� VV background process, which is evaluated at
leading order (LO). Therefore the results are given as a function of the unknown K-factor for the gg� VV
background. QCD corrections for the o�-shell signal processes have only been calculated inclusively in
the jet multiplicity. The experimental analyses are therefore performed inclusively in jet observables and,
the event selections are designed to minimise the dependence on the boost of the VV system, which is
sensitive to the jet multiplicity.
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Figure 2.8 – Feynman diagrams of the main contributions to the ZZ production processes: (a) gg

produced signal (Higgs-mediated), (b) gg produced background (interferes with the signal), (c) qq̄

produced dominant background.

that is very di�erent from a naive sum of the two. This is known as quantum interference and556

it carries through also to QFT.557

Usually the signal and background processes either have di�erent initial and/or final state par-558

ticles, or come from disjoint phase spaces, and can therefore be simulated separately. As a559

simplified example, consider the probability of having one particular sample X, denoted P (X)560

(with 0 Æ P (X) Æ 1) is a function of the complex Matrix Elements, Ms(X), Mb(X) (with561

Ms, Mb œ C), for the signal and background process respectively, is given by,562

P (X) = |Ms(X) + Mb(X)|2 = |Ms(X)|2
¸ ˚˙ ˝

Ps(X)

+ |Mb(X)|2
¸ ˚˙ ˝

Pb(X)

+2 Re(Ms(X)Mb(X))
¸ ˚˙ ˝

Pi(X)

. (2.49)

If the third term (Pi(X), where ‘i’ stands for ‘interference’) is insignificant, the signal and563

background contributions can be simulated separately (with Pb(X) and Ps(X)) and simply564

combined (because the combination is linear). However in the gg æ (Hú
æ)ZZ case, both the565

initial and final states of the signal (gg æ H
ú

æ ZZ, Figure 2.8a) and background (gg æ ZZ,566

Figure 2.8b) processes are identical, and the phase spaces overlap, therefore the contribution567

from the mixed term cannot be ignored. To produce physical samples, the two processes must be568

simulated together due to the non-linear contribution from Pi(X). The interference component569

can have a negative contribution to P (X). The individual components of the signal, background570

and the full process can be seen in Figure 2.9, and indeed the interference contribution is negative571

(explicitly shown in Figure 2.10).572

A final interesting point to note is that if the couplings are scaled in such a way as to increase573

the signal contribution by a factor Ô
µ then the corresponding matrix element needs to be scaled574

by Ô
µ so that,575

|Ms(X)|2 æ |
Ô

µ · Ms(X)|2, (2.50)
then the interference component consequently is scaled by the square root of that factor (i.e576
Ô

µ) as,577

Re(Ms(X)Mb(X)) æ Re(Ôµ · Ms(X)Mb(X)), (2.51)
and therefore the full probability becomes578

Pscaled(X) = µ · Ps(X) + Pb(X) + Ô
µ · Pi(X). (2.52)

This will play a crucial role in introducing non-linear e�ects in the yields in Chapter 6 and579

Chapter 7.580

2.3.2 A unique opportunity for o�-shell measurements581

Since the mass of the Higgs is only around 125 GeV, the vector bosons (2mZ ¥ 182 GeV,582

2mW ¥ 160 GeV) and top quarks (2mt ¥ 346 GeV) that contribute to the on-shell Higgs583
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where �g,o�-shell(ŝ) and �V,o�-shell(ŝ) are the o�-shell coupling scale factors associated with the gg � H�

production and the H� � VV decay. Due to the statistically limited sensitivity of the current analysis,
the o�-shell signal strength and coupling scale factors are assumed in the following to be independent
of ŝ in the high-mass region selected by the analysis. The o�-shell Higgs boson signal cannot be treated
independently from the gg � VV background, as sizeable negative interference e�ects appear [7]. The
interference term is proportional to �µo�-shell = �g,o�-shell · �V,o�-shell.
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Figure 1: The leading-order Feynman diagrams for (a) the gg � H� � VV signal, (b) the continuum gg � VV
background and (c) the qq̄� VV background.

In contrast, the cross-section for on-shell Higgs boson production allows a measurement of the signal
strength:
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�gg�H�VV
on-shell, SM

=
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, (2)

which depends on the total width �H . Assuming identical on-shell and o�-shell Higgs boson coupling
scale factors, the ratio of µo�-shell to µon-shell provides a measurement of the total width of the Higgs boson.
This assumption is particularly relevant to the running of the e�ective coupling �g(ŝ) for the loop-induced
gg � H production process, as it is sensitive to new physics that enters at higher mass scales and could
be probed in the high-mass mVV signal region of this analysis. More details are given in Refs. [12–16].
With the current sensitivity of the analysis, only an upper limit on the total width �H can be determined,
for which the weaker assumption

�2g,on-shell · �2V,on-shell � �2g,o�-shell · �2V,o�-shell , (3)

that the on-shell couplings are no larger than the o�-shell couplings, is su�cient. It is also assumed
that any new physics which modifies the o�-shell signal strength µo�-shell and the o�-shell couplings
�i,o�-shell does not modify the predictions for the backgrounds. Further, neither are there sizeable kinematic
modifications to the o�-shell signal nor new, sizeable signals in the search region of this analysis unrelated
to an enhanced o�-shell signal strength [18, 24].

While higher-order quantum chromodynamics (QCD) and electroweak (EW) corrections are known for
the o�-shell signal process gg � H� � ZZ [25], which are also applicable to gg � H� � WW, no
higher-order QCD calculations are available for the gg� VV background process, which is evaluated at
leading order (LO). Therefore the results are given as a function of the unknown K-factor for the gg� VV
background. QCD corrections for the o�-shell signal processes have only been calculated inclusively in
the jet multiplicity. The experimental analyses are therefore performed inclusively in jet observables and,
the event selections are designed to minimise the dependence on the boost of the VV system, which is
sensitive to the jet multiplicity.
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In contrast, the cross-section for on-shell Higgs boson production allows a measurement of the signal
strength:
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=
�2g,on-shell · �2V,on-shell
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which depends on the total width �H . Assuming identical on-shell and o�-shell Higgs boson coupling
scale factors, the ratio of µo�-shell to µon-shell provides a measurement of the total width of the Higgs boson.
This assumption is particularly relevant to the running of the e�ective coupling �g(ŝ) for the loop-induced
gg � H production process, as it is sensitive to new physics that enters at higher mass scales and could
be probed in the high-mass mVV signal region of this analysis. More details are given in Refs. [12–16].
With the current sensitivity of the analysis, only an upper limit on the total width �H can be determined,
for which the weaker assumption

�2g,on-shell · �2V,on-shell � �2g,o�-shell · �2V,o�-shell , (3)

that the on-shell couplings are no larger than the o�-shell couplings, is su�cient. It is also assumed
that any new physics which modifies the o�-shell signal strength µo�-shell and the o�-shell couplings
�i,o�-shell does not modify the predictions for the backgrounds. Further, neither are there sizeable kinematic
modifications to the o�-shell signal nor new, sizeable signals in the search region of this analysis unrelated
to an enhanced o�-shell signal strength [18, 24].

While higher-order quantum chromodynamics (QCD) and electroweak (EW) corrections are known for
the o�-shell signal process gg � H� � ZZ [25], which are also applicable to gg � H� � WW, no
higher-order QCD calculations are available for the gg� VV background process, which is evaluated at
leading order (LO). Therefore the results are given as a function of the unknown K-factor for the gg� VV
background. QCD corrections for the o�-shell signal processes have only been calculated inclusively in
the jet multiplicity. The experimental analyses are therefore performed inclusively in jet observables and,
the event selections are designed to minimise the dependence on the boost of the VV system, which is
sensitive to the jet multiplicity.
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In contrast, the cross-section for on-shell Higgs boson production allows a measurement of the signal
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which depends on the total width �H . Assuming identical on-shell and o�-shell Higgs boson coupling
scale factors, the ratio of µo�-shell to µon-shell provides a measurement of the total width of the Higgs boson.
This assumption is particularly relevant to the running of the e�ective coupling �g(ŝ) for the loop-induced
gg � H production process, as it is sensitive to new physics that enters at higher mass scales and could
be probed in the high-mass mVV signal region of this analysis. More details are given in Refs. [12–16].
With the current sensitivity of the analysis, only an upper limit on the total width �H can be determined,
for which the weaker assumption

�2g,on-shell · �2V,on-shell � �2g,o�-shell · �2V,o�-shell , (3)

that the on-shell couplings are no larger than the o�-shell couplings, is su�cient. It is also assumed
that any new physics which modifies the o�-shell signal strength µo�-shell and the o�-shell couplings
�i,o�-shell does not modify the predictions for the backgrounds. Further, neither are there sizeable kinematic
modifications to the o�-shell signal nor new, sizeable signals in the search region of this analysis unrelated
to an enhanced o�-shell signal strength [18, 24].

While higher-order quantum chromodynamics (QCD) and electroweak (EW) corrections are known for
the o�-shell signal process gg � H� � ZZ [25], which are also applicable to gg � H� � WW, no
higher-order QCD calculations are available for the gg� VV background process, which is evaluated at
leading order (LO). Therefore the results are given as a function of the unknown K-factor for the gg� VV
background. QCD corrections for the o�-shell signal processes have only been calculated inclusively in
the jet multiplicity. The experimental analyses are therefore performed inclusively in jet observables and,
the event selections are designed to minimise the dependence on the boost of the VV system, which is
sensitive to the jet multiplicity.
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Figure 2.8 – Feynman diagrams of the main contributions to the ZZ production processes: (a) gg

produced signal (Higgs-mediated), (b) gg produced background (interferes with the signal), (c) qq̄

produced dominant background.

that is very di�erent from a naive sum of the two. This is known as quantum interference and556

it carries through also to QFT.557

Usually the signal and background processes either have di�erent initial and/or final state par-558

ticles, or come from disjoint phase spaces, and can therefore be simulated separately. As a559

simplified example, consider the probability of having one particular sample X, denoted P (X)560

(with 0 Æ P (X) Æ 1) is a function of the complex Matrix Elements, Ms(X), Mb(X) (with561

Ms, Mb œ C), for the signal and background process respectively, is given by,562

P (X) = |Ms(X) + Mb(X)|2 = |Ms(X)|2
¸ ˚˙ ˝

Ps(X)

+ |Mb(X)|2
¸ ˚˙ ˝

Pb(X)

+2 Re(Ms(X)Mb(X))
¸ ˚˙ ˝

Pi(X)

. (2.49)

If the third term (Pi(X), where ‘i’ stands for ‘interference’) is insignificant, the signal and563

background contributions can be simulated separately (with Pb(X) and Ps(X)) and simply564

combined (because the combination is linear). However in the gg æ (Hú
æ)ZZ case, both the565

initial and final states of the signal (gg æ H
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æ ZZ, Figure 2.8a) and background (gg æ ZZ,566

Figure 2.8b) processes are identical, and the phase spaces overlap, therefore the contribution567

from the mixed term cannot be ignored. To produce physical samples, the two processes must be568

simulated together due to the non-linear contribution from Pi(X). The interference component569

can have a negative contribution to P (X). The individual components of the signal, background570

and the full process can be seen in Figure 2.9, and indeed the interference contribution is negative571

(explicitly shown in Figure 2.10).572

A final interesting point to note is that if the couplings are scaled in such a way as to increase573

the signal contribution by a factor Ô
µ then the corresponding matrix element needs to be scaled574

by Ô
µ so that,575
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µ · Ms(X)|2, (2.50)
then the interference component consequently is scaled by the square root of that factor (i.e576
Ô

µ) as,577

Re(Ms(X)Mb(X)) æ Re(Ôµ · Ms(X)Mb(X)), (2.51)
and therefore the full probability becomes578

Pscaled(X) = µ · Ps(X) + Pb(X) + Ô
µ · Pi(X). (2.52)

This will play a crucial role in introducing non-linear e�ects in the yields in Chapter 6 and579
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2.3.2 A unique opportunity for o�-shell measurements581

Since the mass of the Higgs is only around 125 GeV, the vector bosons (2mZ ¥ 182 GeV,582

2mW ¥ 160 GeV) and top quarks (2mt ¥ 346 GeV) that contribute to the on-shell Higgs583
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where �g,o�-shell(ŝ) and �V,o�-shell(ŝ) are the o�-shell coupling scale factors associated with the gg � H�

production and the H� � VV decay. Due to the statistically limited sensitivity of the current analysis,
the o�-shell signal strength and coupling scale factors are assumed in the following to be independent
of ŝ in the high-mass region selected by the analysis. The o�-shell Higgs boson signal cannot be treated
independently from the gg � VV background, as sizeable negative interference e�ects appear [7]. The
interference term is proportional to �µo�-shell = �g,o�-shell · �V,o�-shell.
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Figure 1: The leading-order Feynman diagrams for (a) the gg � H� � VV signal, (b) the continuum gg � VV
background and (c) the qq̄� VV background.

In contrast, the cross-section for on-shell Higgs boson production allows a measurement of the signal
strength:

µon-shell �
�gg�H�VV

on-shell

�gg�H�VV
on-shell, SM

=
�2g,on-shell · �2V,on-shell

�H/�SM
H

, (2)

which depends on the total width �H . Assuming identical on-shell and o�-shell Higgs boson coupling
scale factors, the ratio of µo�-shell to µon-shell provides a measurement of the total width of the Higgs boson.
This assumption is particularly relevant to the running of the e�ective coupling �g(ŝ) for the loop-induced
gg � H production process, as it is sensitive to new physics that enters at higher mass scales and could
be probed in the high-mass mVV signal region of this analysis. More details are given in Refs. [12–16].
With the current sensitivity of the analysis, only an upper limit on the total width �H can be determined,
for which the weaker assumption

�2g,on-shell · �2V,on-shell � �2g,o�-shell · �2V,o�-shell , (3)

that the on-shell couplings are no larger than the o�-shell couplings, is su�cient. It is also assumed
that any new physics which modifies the o�-shell signal strength µo�-shell and the o�-shell couplings
�i,o�-shell does not modify the predictions for the backgrounds. Further, neither are there sizeable kinematic
modifications to the o�-shell signal nor new, sizeable signals in the search region of this analysis unrelated
to an enhanced o�-shell signal strength [18, 24].

While higher-order quantum chromodynamics (QCD) and electroweak (EW) corrections are known for
the o�-shell signal process gg � H� � ZZ [25], which are also applicable to gg � H� � WW, no
higher-order QCD calculations are available for the gg� VV background process, which is evaluated at
leading order (LO). Therefore the results are given as a function of the unknown K-factor for the gg� VV
background. QCD corrections for the o�-shell signal processes have only been calculated inclusively in
the jet multiplicity. The experimental analyses are therefore performed inclusively in jet observables and,
the event selections are designed to minimise the dependence on the boost of the VV system, which is
sensitive to the jet multiplicity.
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In contrast, the cross-section for on-shell Higgs boson production allows a measurement of the signal
strength:
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which depends on the total width �H . Assuming identical on-shell and o�-shell Higgs boson coupling
scale factors, the ratio of µo�-shell to µon-shell provides a measurement of the total width of the Higgs boson.
This assumption is particularly relevant to the running of the e�ective coupling �g(ŝ) for the loop-induced
gg � H production process, as it is sensitive to new physics that enters at higher mass scales and could
be probed in the high-mass mVV signal region of this analysis. More details are given in Refs. [12–16].
With the current sensitivity of the analysis, only an upper limit on the total width �H can be determined,
for which the weaker assumption

�2g,on-shell · �2V,on-shell � �2g,o�-shell · �2V,o�-shell , (3)

that the on-shell couplings are no larger than the o�-shell couplings, is su�cient. It is also assumed
that any new physics which modifies the o�-shell signal strength µo�-shell and the o�-shell couplings
�i,o�-shell does not modify the predictions for the backgrounds. Further, neither are there sizeable kinematic
modifications to the o�-shell signal nor new, sizeable signals in the search region of this analysis unrelated
to an enhanced o�-shell signal strength [18, 24].

While higher-order quantum chromodynamics (QCD) and electroweak (EW) corrections are known for
the o�-shell signal process gg � H� � ZZ [25], which are also applicable to gg � H� � WW, no
higher-order QCD calculations are available for the gg� VV background process, which is evaluated at
leading order (LO). Therefore the results are given as a function of the unknown K-factor for the gg� VV
background. QCD corrections for the o�-shell signal processes have only been calculated inclusively in
the jet multiplicity. The experimental analyses are therefore performed inclusively in jet observables and,
the event selections are designed to minimise the dependence on the boost of the VV system, which is
sensitive to the jet multiplicity.
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of ŝ in the high-mass region selected by the analysis. The o�-shell Higgs boson signal cannot be treated
independently from the gg � VV background, as sizeable negative interference e�ects appear [7]. The
interference term is proportional to �µo�-shell = �g,o�-shell · �V,o�-shell.
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Figure 1: The leading-order Feynman diagrams for (a) the gg � H� � VV signal, (b) the continuum gg � VV
background and (c) the qq̄� VV background.

In contrast, the cross-section for on-shell Higgs boson production allows a measurement of the signal
strength:

µon-shell �
�gg�H�VV

on-shell

�gg�H�VV
on-shell, SM

=
�2g,on-shell · �2V,on-shell

�H/�SM
H

, (2)

which depends on the total width �H . Assuming identical on-shell and o�-shell Higgs boson coupling
scale factors, the ratio of µo�-shell to µon-shell provides a measurement of the total width of the Higgs boson.
This assumption is particularly relevant to the running of the e�ective coupling �g(ŝ) for the loop-induced
gg � H production process, as it is sensitive to new physics that enters at higher mass scales and could
be probed in the high-mass mVV signal region of this analysis. More details are given in Refs. [12–16].
With the current sensitivity of the analysis, only an upper limit on the total width �H can be determined,
for which the weaker assumption

�2g,on-shell · �2V,on-shell � �2g,o�-shell · �2V,o�-shell , (3)

that the on-shell couplings are no larger than the o�-shell couplings, is su�cient. It is also assumed
that any new physics which modifies the o�-shell signal strength µo�-shell and the o�-shell couplings
�i,o�-shell does not modify the predictions for the backgrounds. Further, neither are there sizeable kinematic
modifications to the o�-shell signal nor new, sizeable signals in the search region of this analysis unrelated
to an enhanced o�-shell signal strength [18, 24].

While higher-order quantum chromodynamics (QCD) and electroweak (EW) corrections are known for
the o�-shell signal process gg � H� � ZZ [25], which are also applicable to gg � H� � WW, no
higher-order QCD calculations are available for the gg� VV background process, which is evaluated at
leading order (LO). Therefore the results are given as a function of the unknown K-factor for the gg� VV
background. QCD corrections for the o�-shell signal processes have only been calculated inclusively in
the jet multiplicity. The experimental analyses are therefore performed inclusively in jet observables and,
the event selections are designed to minimise the dependence on the boost of the VV system, which is
sensitive to the jet multiplicity.
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(c)

Figure 2.8 – Feynman diagrams of the main contributions to the ZZ production processes: (a) gg

produced signal (Higgs-mediated), (b) gg produced background (interferes with the signal), (c) qq̄

produced dominant background.

that is very di�erent from a naive sum of the two. This is known as quantum interference and556

it carries through also to QFT.557

Usually the signal and background processes either have di�erent initial and/or final state par-558

ticles, or come from disjoint phase spaces, and can therefore be simulated separately. As a559

simplified example, consider the probability of having one particular sample X, denoted P (X)560

(with 0 Æ P (X) Æ 1) is a function of the complex Matrix Elements, Ms(X), Mb(X) (with561

Ms, Mb œ C), for the signal and background process respectively, is given by,562

P (X) = |Ms(X) + Mb(X)|2 = |Ms(X)|2
¸ ˚˙ ˝

Ps(X)

+ |Mb(X)|2
¸ ˚˙ ˝

Pb(X)

+2 Re(Ms(X)Mb(X))
¸ ˚˙ ˝

Pi(X)

. (2.49)

If the third term (Pi(X), where ‘i’ stands for ‘interference’) is insignificant, the signal and563

background contributions can be simulated separately (with Pb(X) and Ps(X)) and simply564

combined (because the combination is linear). However in the gg æ (Hú
æ)ZZ case, both the565

initial and final states of the signal (gg æ H
ú

æ ZZ, Figure 2.8a) and background (gg æ ZZ,566

Figure 2.8b) processes are identical, and the phase spaces overlap, therefore the contribution567

from the mixed term cannot be ignored. To produce physical samples, the two processes must be568

simulated together due to the non-linear contribution from Pi(X). The interference component569

can have a negative contribution to P (X). The individual components of the signal, background570

and the full process can be seen in Figure 2.9, and indeed the interference contribution is negative571

(explicitly shown in Figure 2.10).572

A final interesting point to note is that if the couplings are scaled in such a way as to increase573

the signal contribution by a factor Ô
µ then the corresponding matrix element needs to be scaled574

by Ô
µ so that,575

|Ms(X)|2 æ |
Ô

µ · Ms(X)|2, (2.50)
then the interference component consequently is scaled by the square root of that factor (i.e576
Ô

µ) as,577

Re(Ms(X)Mb(X)) æ Re(Ôµ · Ms(X)Mb(X)), (2.51)
and therefore the full probability becomes578

Pscaled(X) = µ · Ps(X) + Pb(X) + Ô
µ · Pi(X). (2.52)

This will play a crucial role in introducing non-linear e�ects in the yields in Chapter 6 and579

Chapter 7.580

2.3.2 A unique opportunity for o�-shell measurements581

Since the mass of the Higgs is only around 125 GeV, the vector bosons (2mZ ¥ 182 GeV,582

2mW ¥ 160 GeV) and top quarks (2mt ¥ 346 GeV) that contribute to the on-shell Higgs583

26

Scale by signal strength μ:

gg Background ggF Signal

N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

DRAFT

g

g

H
⇤

V

V

t, b

(a)

V

V

g

g

q

(b)

q̄

q V

V

(c)

Figure 1: The leading-order Feynman diagrams for (a) the gg ! H
⇤ ! Z Z signal, (b) the continuum gg ! Z Z

background and (c) the qq̄ ! Z Z background.

In contrast, the cross-section for on-shell Higgs production allows a measurement of the signal strength:246

247

µon-shell ⌘
�gg!H!ZZ

on-shell

�gg!H!ZZ

on-shell, SM

=
2
g,on-shell · 2V,on-shell

�H/�SM
H

, (5)

which depends on the total width �H through the Higgs boson propagator. Assuming identical on-shell248

and o�-shell Higgs couplings, the ratio of µo�-shell to µon-shell provides a measurement of the total width249

of the Higgs boson. This assumption is particularly relevant to the running of the e�ective coupling g (ŝ)250

for the loop-induced gg ! H production process, as it is sensitive to new physics that enters at higher251

mass scales and could be probed in the high-mass mZZ signal region of this analysis. More details are252

given in Refs. [13–16]. New physics can also enter in the decay of the Higgs boson, resulting in this case253

in a modification of the 2
V,on-shell couplings. The study of the o�-shell Higgs boson production will then254

also add information about the coupling structure of the Higgs boson particle.255

With the current sensitivity of the analysis, only an upper limit on the total width �H can be determined,256

for which the weaker assumption257

2
g,on-shell · 2V,on-shell  2g,o�-shell · 2V,o�-shell , (6)

that the on-shell couplings are no larger than the o�-shell couplings, is su�cient. It is also assumed that258

any new physics which modifies the o�-shell signal strength µo�-shell and the o�-shell couplings i,o�-shell259

does not modify the predictions for the backgrounds. It is further assumed that there are no sizable260

kinematic modifications to the o�-shell signal nor any new sizable signal in the search region of this261

analysis which is unrelated to an enhanced o�-shell signal strength [22, 23].262

Higher-order quantum chromodynamics (QCD) and electroweak (EW) corrections are known for the o�-263

shell signal process gg ! H
⇤ ! Z Z [24]; recently higher-order QCD corrections have became available264

also for the gg ! Z Z background process [25, 26]. QCD corrections for the o�-shell signal processes265

have only been calculated inclusively in the jet multiplicity or non-zero pT (ZZ) values that are induced266

by the higher order QCD corrections, and may no longer be accurate if event selections which bias the267

jet multiplicity or transverse momentum pT (ZZ) are applied. Consequently, the impact of any direct268

or indirect selections in jet multiplicity or pT (ZZ), must be assessed by simulating the additional QCD269

activity with a parton shower MC to approximate the missing higher order matrix element contributions.270

This will lead to correspondingly larger acceptance uncertainties. The experimental analyses are therefore271

performed inclusively in jet observables and the event selections are designed to minimise the dependence272

on the boost of the Z Z system, which is sensitive to the jet multiplicity.273
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which depends on the total width �H through the Higgs boson propagator. Assuming identical on-shell248

and o�-shell Higgs couplings, the ratio of µo�-shell to µon-shell provides a measurement of the total width249

of the Higgs boson. This assumption is particularly relevant to the running of the e�ective coupling g (ŝ)250

for the loop-induced gg ! H production process, as it is sensitive to new physics that enters at higher251

mass scales and could be probed in the high-mass mZZ signal region of this analysis. More details are252

given in Refs. [13–16]. New physics can also enter in the decay of the Higgs boson, resulting in this case253

in a modification of the 2
V,on-shell couplings. The study of the o�-shell Higgs boson production will then254
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With the current sensitivity of the analysis, only an upper limit on the total width �H can be determined,256

for which the weaker assumption257
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any new physics which modifies the o�-shell signal strength µo�-shell and the o�-shell couplings i,o�-shell259

does not modify the predictions for the backgrounds. It is further assumed that there are no sizable260

kinematic modifications to the o�-shell signal nor any new sizable signal in the search region of this261

analysis which is unrelated to an enhanced o�-shell signal strength [22, 23].262

Higher-order quantum chromodynamics (QCD) and electroweak (EW) corrections are known for the o�-263
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also for the gg ! Z Z background process [25, 26]. QCD corrections for the o�-shell signal processes265

have only been calculated inclusively in the jet multiplicity or non-zero pT (ZZ) values that are induced266

by the higher order QCD corrections, and may no longer be accurate if event selections which bias the267

jet multiplicity or transverse momentum pT (ZZ) are applied. Consequently, the impact of any direct268

or indirect selections in jet multiplicity or pT (ZZ), must be assessed by simulating the additional QCD269

activity with a parton shower MC to approximate the missing higher order matrix element contributions.270

This will lead to correspondingly larger acceptance uncertainties. The experimental analyses are therefore271
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Choice of observable
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Choice of observable

We want to compare likelihoods: 
p(𝒟 |μ)
p(𝒟 |μ0)

ℒ(μ |𝒟) = p(𝒟 |μ)
Neyman–Pearson lemma: Likelihood ratio is the most powerful test statistic
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Choice of observable

We want to compare likelihoods: 
p(𝒟 |μ)
p(𝒟 |μ0)

ℒ(μ |𝒟) = p(𝒟 |μ)
Neyman–Pearson lemma: Likelihood ratio is the most powerful test statistic
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Choice of observable

We want to compare likelihoods: 
p(𝒟 |μ)
p(𝒟 |μ0)

ℒ(μ |𝒟) = p(𝒟 |μ)
Neyman–Pearson lemma: Likelihood ratio is the most powerful test statistic

s(xi) =
p(xi |S)

p(xi |S) + p(xi |B)
A neural network classifier trained on S vs B, estimates the decision function*:

* Equal class weights
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Choice of observable

We want to compare likelihoods: 
p(𝒟 |μ)
p(𝒟 |μ0)

ℒ(μ |𝒟) = p(𝒟 |μ)
Neyman–Pearson lemma: Likelihood ratio is the most powerful test statistic

s(xi) =
p(xi |S)

p(xi |S) + p(xi |B)
A neural network classifier trained on S vs B, estimates the decision function*:

p(xi |μ)
p(xi |μ = 0)

=
1

μ ⋅ νS + νB

μ ⋅ νSp(xi |S) + νBp(xi |B)
p(xi |B)

=
μ

μ ⋅ νS + νB
⋅

s(xi)
1 − s(xi)

+ νB

Which contains all the information required for the likelihood ratio:

Same observable  is optimal to test all  hypotheses!
No need to develop separate analysis per hypothesis 

s μ
μ* Equal class weights
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Choice of observable

We want to compare likelihoods: 
p(ℒ |μ)
p(ℒ |μ0)

Γ(μ |ℒ) = p(ℒ |μ)
Neyman–Pearson lemma: Likelihood ratio is the most powerful test statistic

s(xi) = p(xi |S)
p(xi |S) + p(xi |B)A neural network classifier trained on S vs B, estimates the decision function*:

p(xi |μ)
p(xi |μ = 0) = 1

μ Δ ηS + ηB

μ Δ ηSp(xi |S) + ηBp(xi |B)
p(xi |B) = μ

μ Δ ηS + ηB
Δ s(xi)

1 𝒟 s(xi)
+ ηB

Which contains all the information required for the likelihood ratio:

Same observable  is optimal to test all  hypotheses!
No need to develop separate analysis per hypothesis 

s μ
μ* Equal class weights
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What breaks down?

No longer in this convenient spacial case: The same observable no longer optimal due to non-linear effects coming from 
quantum interference 

Also does not generalise to an arbitrary theory parameter , (eg. Effective Field Theory parameters)θ

Can we modify the LHC analysis methodology to design near-optimal analyse for the general case?

CHAPTER 2. THEORETICAL OVERVIEW

where �g,o�-shell(ŝ) and �V,o�-shell(ŝ) are the o�-shell coupling scale factors associated with the gg � H�

production and the H� � VV decay. Due to the statistically limited sensitivity of the current analysis,
the o�-shell signal strength and coupling scale factors are assumed in the following to be independent
of ŝ in the high-mass region selected by the analysis. The o�-shell Higgs boson signal cannot be treated
independently from the gg � VV background, as sizeable negative interference e�ects appear [7]. The
interference term is proportional to �µo�-shell = �g,o�-shell · �V,o�-shell.
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Figure 1: The leading-order Feynman diagrams for (a) the gg � H� � VV signal, (b) the continuum gg � VV
background and (c) the qq̄� VV background.

In contrast, the cross-section for on-shell Higgs boson production allows a measurement of the signal
strength:

µon-shell �
�gg�H�VV

on-shell

�gg�H�VV
on-shell, SM

=
�2g,on-shell · �2V,on-shell

�H/�SM
H

, (2)

which depends on the total width �H . Assuming identical on-shell and o�-shell Higgs boson coupling
scale factors, the ratio of µo�-shell to µon-shell provides a measurement of the total width of the Higgs boson.
This assumption is particularly relevant to the running of the e�ective coupling �g(ŝ) for the loop-induced
gg � H production process, as it is sensitive to new physics that enters at higher mass scales and could
be probed in the high-mass mVV signal region of this analysis. More details are given in Refs. [12–16].
With the current sensitivity of the analysis, only an upper limit on the total width �H can be determined,
for which the weaker assumption

�2g,on-shell · �2V,on-shell � �2g,o�-shell · �2V,o�-shell , (3)

that the on-shell couplings are no larger than the o�-shell couplings, is su�cient. It is also assumed
that any new physics which modifies the o�-shell signal strength µo�-shell and the o�-shell couplings
�i,o�-shell does not modify the predictions for the backgrounds. Further, neither are there sizeable kinematic
modifications to the o�-shell signal nor new, sizeable signals in the search region of this analysis unrelated
to an enhanced o�-shell signal strength [18, 24].

While higher-order quantum chromodynamics (QCD) and electroweak (EW) corrections are known for
the o�-shell signal process gg � H� � ZZ [25], which are also applicable to gg � H� � WW, no
higher-order QCD calculations are available for the gg� VV background process, which is evaluated at
leading order (LO). Therefore the results are given as a function of the unknown K-factor for the gg� VV
background. QCD corrections for the o�-shell signal processes have only been calculated inclusively in
the jet multiplicity. The experimental analyses are therefore performed inclusively in jet observables and,
the event selections are designed to minimise the dependence on the boost of the VV system, which is
sensitive to the jet multiplicity.
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where �g,o�-shell(ŝ) and �V,o�-shell(ŝ) are the o�-shell coupling scale factors associated with the gg � H�

production and the H� � VV decay. Due to the statistically limited sensitivity of the current analysis,
the o�-shell signal strength and coupling scale factors are assumed in the following to be independent
of ŝ in the high-mass region selected by the analysis. The o�-shell Higgs boson signal cannot be treated
independently from the gg � VV background, as sizeable negative interference e�ects appear [7]. The
interference term is proportional to �µo�-shell = �g,o�-shell · �V,o�-shell.
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Figure 1: The leading-order Feynman diagrams for (a) the gg � H� � VV signal, (b) the continuum gg � VV
background and (c) the qq̄� VV background.

In contrast, the cross-section for on-shell Higgs boson production allows a measurement of the signal
strength:

µon-shell �
�gg�H�VV

on-shell

�gg�H�VV
on-shell, SM

=
�2g,on-shell · �2V,on-shell

�H/�SM
H

, (2)

which depends on the total width �H . Assuming identical on-shell and o�-shell Higgs boson coupling
scale factors, the ratio of µo�-shell to µon-shell provides a measurement of the total width of the Higgs boson.
This assumption is particularly relevant to the running of the e�ective coupling �g(ŝ) for the loop-induced
gg � H production process, as it is sensitive to new physics that enters at higher mass scales and could
be probed in the high-mass mVV signal region of this analysis. More details are given in Refs. [12–16].
With the current sensitivity of the analysis, only an upper limit on the total width �H can be determined,
for which the weaker assumption

�2g,on-shell · �2V,on-shell � �2g,o�-shell · �2V,o�-shell , (3)

that the on-shell couplings are no larger than the o�-shell couplings, is su�cient. It is also assumed
that any new physics which modifies the o�-shell signal strength µo�-shell and the o�-shell couplings
�i,o�-shell does not modify the predictions for the backgrounds. Further, neither are there sizeable kinematic
modifications to the o�-shell signal nor new, sizeable signals in the search region of this analysis unrelated
to an enhanced o�-shell signal strength [18, 24].

While higher-order quantum chromodynamics (QCD) and electroweak (EW) corrections are known for
the o�-shell signal process gg � H� � ZZ [25], which are also applicable to gg � H� � WW, no
higher-order QCD calculations are available for the gg� VV background process, which is evaluated at
leading order (LO). Therefore the results are given as a function of the unknown K-factor for the gg� VV
background. QCD corrections for the o�-shell signal processes have only been calculated inclusively in
the jet multiplicity. The experimental analyses are therefore performed inclusively in jet observables and,
the event selections are designed to minimise the dependence on the boost of the VV system, which is
sensitive to the jet multiplicity.
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where �g,o�-shell(ŝ) and �V,o�-shell(ŝ) are the o�-shell coupling scale factors associated with the gg � H�

production and the H� � VV decay. Due to the statistically limited sensitivity of the current analysis,
the o�-shell signal strength and coupling scale factors are assumed in the following to be independent
of ŝ in the high-mass region selected by the analysis. The o�-shell Higgs boson signal cannot be treated
independently from the gg � VV background, as sizeable negative interference e�ects appear [7]. The
interference term is proportional to �µo�-shell = �g,o�-shell · �V,o�-shell.
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Figure 1: The leading-order Feynman diagrams for (a) the gg � H� � VV signal, (b) the continuum gg � VV
background and (c) the qq̄� VV background.

In contrast, the cross-section for on-shell Higgs boson production allows a measurement of the signal
strength:

µon-shell �
�gg�H�VV

on-shell

�gg�H�VV
on-shell, SM

=
�2g,on-shell · �2V,on-shell

�H/�SM
H

, (2)

which depends on the total width �H . Assuming identical on-shell and o�-shell Higgs boson coupling
scale factors, the ratio of µo�-shell to µon-shell provides a measurement of the total width of the Higgs boson.
This assumption is particularly relevant to the running of the e�ective coupling �g(ŝ) for the loop-induced
gg � H production process, as it is sensitive to new physics that enters at higher mass scales and could
be probed in the high-mass mVV signal region of this analysis. More details are given in Refs. [12–16].
With the current sensitivity of the analysis, only an upper limit on the total width �H can be determined,
for which the weaker assumption

�2g,on-shell · �2V,on-shell � �2g,o�-shell · �2V,o�-shell , (3)

that the on-shell couplings are no larger than the o�-shell couplings, is su�cient. It is also assumed
that any new physics which modifies the o�-shell signal strength µo�-shell and the o�-shell couplings
�i,o�-shell does not modify the predictions for the backgrounds. Further, neither are there sizeable kinematic
modifications to the o�-shell signal nor new, sizeable signals in the search region of this analysis unrelated
to an enhanced o�-shell signal strength [18, 24].

While higher-order quantum chromodynamics (QCD) and electroweak (EW) corrections are known for
the o�-shell signal process gg � H� � ZZ [25], which are also applicable to gg � H� � WW, no
higher-order QCD calculations are available for the gg� VV background process, which is evaluated at
leading order (LO). Therefore the results are given as a function of the unknown K-factor for the gg� VV
background. QCD corrections for the o�-shell signal processes have only been calculated inclusively in
the jet multiplicity. The experimental analyses are therefore performed inclusively in jet observables and,
the event selections are designed to minimise the dependence on the boost of the VV system, which is
sensitive to the jet multiplicity.

3

(c)

Figure 2.8 – Feynman diagrams of the main contributions to the ZZ production processes: (a) gg

produced signal (Higgs-mediated), (b) gg produced background (interferes with the signal), (c) qq̄

produced dominant background.

that is very di�erent from a naive sum of the two. This is known as quantum interference and556

it carries through also to QFT.557

Usually the signal and background processes either have di�erent initial and/or final state par-558

ticles, or come from disjoint phase spaces, and can therefore be simulated separately. As a559

simplified example, consider the probability of having one particular sample X, denoted P (X)560

(with 0 Æ P (X) Æ 1) is a function of the complex Matrix Elements, Ms(X), Mb(X) (with561

Ms, Mb œ C), for the signal and background process respectively, is given by,562

P (X) = |Ms(X) + Mb(X)|2 = |Ms(X)|2
¸ ˚˙ ˝

Ps(X)

+ |Mb(X)|2
¸ ˚˙ ˝

Pb(X)

+2 Re(Ms(X)Mb(X))
¸ ˚˙ ˝

Pi(X)

. (2.49)

If the third term (Pi(X), where ‘i’ stands for ‘interference’) is insignificant, the signal and563

background contributions can be simulated separately (with Pb(X) and Ps(X)) and simply564

combined (because the combination is linear). However in the gg æ (Hú
æ)ZZ case, both the565

initial and final states of the signal (gg æ H
ú

æ ZZ, Figure 2.8a) and background (gg æ ZZ,566

Figure 2.8b) processes are identical, and the phase spaces overlap, therefore the contribution567

from the mixed term cannot be ignored. To produce physical samples, the two processes must be568

simulated together due to the non-linear contribution from Pi(X). The interference component569

can have a negative contribution to P (X). The individual components of the signal, background570

and the full process can be seen in Figure 2.9, and indeed the interference contribution is negative571

(explicitly shown in Figure 2.10).572

A final interesting point to note is that if the couplings are scaled in such a way as to increase573

the signal contribution by a factor Ô
µ then the corresponding matrix element needs to be scaled574

by Ô
µ so that,575

|Ms(X)|2 æ |
Ô

µ · Ms(X)|2, (2.50)
then the interference component consequently is scaled by the square root of that factor (i.e576
Ô

µ) as,577

Re(Ms(X)Mb(X)) æ Re(Ôµ · Ms(X)Mb(X)), (2.51)
and therefore the full probability becomes578

Pscaled(X) = µ · Ps(X) + Pb(X) + Ô
µ · Pi(X). (2.52)

This will play a crucial role in introducing non-linear e�ects in the yields in Chapter 6 and579

Chapter 7.580

2.3.2 A unique opportunity for o�-shell measurements581

Since the mass of the Higgs is only around 125 GeV, the vector bosons (2mZ ¥ 182 GeV,582

2mW ¥ 160 GeV) and top quarks (2mt ¥ 346 GeV) that contribute to the on-shell Higgs583
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p(xi |μ1)
p(xi |ref )

=
s(xi)

1 − s(xi)

s(xi) =
p(xi |μ1)

p(xi |μ1) + p(xi |ref )
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Estimating high-dimensional density ratios

We want to compare likelihoods: 
p(𝒟 |μ)

p(𝒟 |ref )

ℒ(μ |𝒟) = p(𝒟 |μ)
Neyman–Pearson lemma: Likelihood ratio is the most powerful test statistic

✴ Optimal statistic to test each value of 
✴ We get the LR per event (unbinned)

μ

Cranmer et al

A neural network classifier trained on simulated samples from  vs 
simulated samples from , estimates the decision function:

θ1
ref

Which contains all the information required for the likelihood ratio:

https://arxiv.org/abs/1506.02169
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m4l Matrix-Element-based Observable
(ggF from MCFM)

Target
RW

Source

Figure 1: One-dimensional reweight closure diagnostic with 𝐿4𝐿 and a high-level observable that represents the
squared matrix-element for the 𝑀𝑀 → 𝑁 → 𝑂𝑂 → 4𝑃 process from reconstructed quantities computed using
MCFM [29]. The former is an example diagnostic for an observable directly used in the network training, and the
latter is an example diagnostic of the network’s ability to learn high-level physics observables that are not used
directly for training. The original reference sample (blue, dashed), is reweighted (orange, solid) using the likelihood
ratio estimated with ensembles to match the target (green, dashed). The lower panel shows the ratio between the
reweighted reference sample and the target sample.
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−2 ⋅ log
P(xi |μ = 0.5)
P(xi |μ = 1)

−2 ⋅ log
P(xi |μ = 1.5)
P(xi |μ = 1)

Figure 6: A comparison of expected sensitivity from various analysis strategies using the log-likelihood ratio test
statistic 𝐿𝐿, as a function of 𝑀. The evaluation is performed on an Asimov dataset generated with 𝑀 = 1. The
red curve represents NSBI. The green curve represents a typical histogram analysis that uses a fixed observable,
log 𝑁𝑀/𝑁(𝑂 |𝑀 = 1), as a discriminant, with 15 bins. The markers show the sensitivity for various histogram analyses
that use specific discriminants, 𝑁(𝑂𝑁 |𝑀)/𝑁(𝑂𝑁 |𝑀 = 1), for specific values of 𝑀(= 0.0, 0.05, 0.15, 1.9), with 15 (green
pluses), 20 (yellow crosses), 30 (orange stars) or 90 (red dots) bins. The improved sensitivity of the green dots over
the green curve (both using 15 bins) is due to the use of a parameterised observable.

Figure 7: The sum of log density-ratio →2 log(𝑁(𝑂𝑁 |𝑀↑)/𝑁(𝑂𝑁 | �̂�)) for events in bins of 𝑃4𝑂 , for a hypothesis 𝑀↑ = 0.5
(left) or a hypothesis 𝑀↑ = 1.5 (right), with �̂� = 1 as the maximum likelihood estimate on an Asimov dataset generated
at 𝑀 = 1. Events in regions with 𝐿𝐿=𝐿↑ > 0 are collectively more consistent with a 𝑀 = 𝑀

↑ hypthesis over a 𝑀 = �̂�

hypothesis, while regions with 𝐿𝐿=𝐿↑ < 0 are collectively less consistent. The very high mass region (𝑃4𝑂 > 1000
GeV) is equally consistent with both hypotheses and provides no additional sensitivity.

22
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(a) (b)

Figure 13: Comparison between observed and the expected background distributions of the (a) optimal observable
at 𝐿o!-shell = 0 and of the (b) quadruplet mass 𝑀4𝐿 . The red lines shows the expected distribution of the best-fit
hypothesis 𝐿. The bottom plot shows a comparison between the distribution of the background-only and best-fit
hypotheses. All yields are estimated under the best-fit hypothesis. The hashed area corresponds to the total systematic
uncertainty on the expected distributions. The first and last bins contains overflow events.

𝐿o!-shell = 0.87+0.75
→0.54 (1.00+1.04

→0.95)

at 68% CL. The contribution of MC statistical uncertainty to the total uncertainty is less than 0.01. The
fitted values of 𝑁0 𝑀

𝑁𝑁𝑂𝑂 , 𝑁1 𝑀
𝑁𝑁𝑂𝑂 , and 𝑁

2 𝑀
𝑁𝑁𝑂𝑂 are 1.12 ± 0.04, 0.85 ± 0.05, and 0.90 ± 0.07, respectively. The

result presented here has a reduced uncertainty when compared to previous histogram-based analysis
observed value of 0.79+1.21

→0.77 (expected 𝐿o!-shell < 1.14 at 68% CL).

7.1 Combination with the analysis in the 2𝜴2𝜶 decay channel

The new result presented in this paper is combined with the most recent ATLAS o!-shell Higgs
boson production measurement in the 𝑂

↑
↓ 𝑃𝑃 ↓ 2𝑄2𝑅 decay channel [17]. The histogram-based

𝑂
↑
↓ 𝑃𝑃 ↓ 2𝑄2𝑅 analysis interprets the binned transverse mass 𝑀𝑂𝑂

T distribution in three di!erent signal
regions, in addition to the yield of four control regions enriched in 𝑃 + jets, non-resonant 𝑆𝐿 events, and
𝑇𝑇 ↓ 𝑈𝑃 events. The test statistic used for the combination is built from the log-likelihood ratio in Eq. 15,
where now the sum over regions also includes the several 𝑀𝑂𝑂

T bins and control regions of the analysis in
the 𝑂

↑
↓ 𝑃𝑃 ↓ 2𝑄2𝑅 decay channel.

The systematic uncertainty model used here is expanded to include constrained and unconstrained nuisance
parameters exclusive to the analysis of the 𝑂

↑
↓ 𝑃𝑃 ↓ 2𝑄2𝑅 decay channels. Experimental and common

theory uncertainties, i.e. pertaining to 𝑉𝑉 ↓ 𝑃𝑃 and 𝑇𝑇 ↓ 𝑃𝑃 modeling, are modeled with common NPs
that modify both likelihood components. Uncertainties related to missing higher-order EW corrections in
the 𝑇𝑇 ↓ 𝑃𝑃 process, which were estimated with di!erent methods in both analyses are modeled with
separate nuisance parameters for the 𝑂

↑
↓ 𝑃𝑃 ↓ 4𝑄 and 𝑂

↑
↓ 𝑃𝑃 ↓ 2𝑄2𝑅 analyses, but the measured

26
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Different NN observables

Appendix

A Construction of optimal observables

Despite the high dimension of the final-state phase space of processes such as 𝐿𝐿 → 𝑀𝑀 → 4𝑁 and
𝑂𝑂 → 𝑀𝑀 + 2 𝑃 → 4𝑁 + 2 𝑃 , the signal being studied tends to be concentrated in a small region. Histogram-
based multi-variate analyses are able to accurately isolate the regions with large statistical significance.
In the case of non-linear analyses, like the measurement of the o!-shell Higgs boson production, these
regions will change depending on the value of the parameter of interest.

The explicit estimate of the density ratios 𝑄(𝑅 |𝑆, 𝑇)/𝑄ref(𝑅) allows the creation of optimal observables
𝑄(𝑅 |𝑆, �̂�)/𝑄(𝑅 |𝑆 = 1, �̂�) which depend on the value of the signal strength 𝑆. Figure 18 shows this
observable for 𝑆o!-shell = 0.3 and 1.7. Reference [30] shows that the test statistic built from the optimal
observable multinomial density converges to the NSBI value in the limit of large number of bins.

(a) (b)

Figure 18: Comparison between data and expectation in the SR (𝑈pre (𝑅) > ↑0.85) of the optimal observables (a)
𝑄(𝑅 |𝑆 = 0.3, �̂�)/𝑄(𝑅 |1.0, �̂�) and (b) 𝑄(𝑅 |𝑆 = 1.7, �̂�)/𝑄(𝑅 |1.0, �̂�). The red line shows the expected distribution for
which the observable is optimal. The hashed band shows the total systematic uncertainty on the expected distribution.
The first and last bin contain overflow events.

The explicit estimate of the density ratios 𝑄(𝑅 |𝑆, 𝑇)/𝑄ref(𝑅) can also be used to study distributions enhancing
the weight of those events which contribute the most to di!erentiate the SM hypothesis and another
hypothesis with di!erent value of 𝑆o!-shell. Figures 19(a) and 19(b) show a comparison between the observed
and expected distributions of 𝑈pre(𝑅) when events are weighted by 𝑄(𝑅 |𝑆o!-shell = 0.3)/𝑄(𝑅 |𝑆o!-shell = 1)
and 𝑄(𝑅 |𝑆o!-shell = 1.7)/𝑄(𝑅 |𝑆o!-shell = 1), respectively.
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Neyman construction



Figure 4: Distribution of the test statistic for pseudo-experiments with a 𝐿 of 0 (left) and 1 (right). The 1𝑀 and 2𝑀
confidence intervals are built using a Neyman construction by integrating up to 68.27% (yellow vertical dashed line)
and 95.45% (red vertical dashed line) of the 15,000 pseudo-experiments, respectively.

The formalism discussed in this section lends itself to further tests for robustness on toy samples generated
by shifting multiple nuisance parameters simultaneously and verifying that the confidence bands remain
well-behaved in such scenarios. Such samples can be generated by a reweighting procedure similar to the
one described in Section 6.2, this time using the probability density ratio that includes nuisance parameters
(Eq. 16),

𝑁
rwt-ref
𝐿

→ 𝑁
Asimov
𝐿

(𝐿, 𝑂) =
𝑃(𝐿, 𝑂)

𝑃rwt-ref
·
𝑄(𝑅𝐿 |𝐿, 𝑂)

𝑄rwt-ref(𝑅𝐿)
· 𝑁

rwt-ref
𝐿

. (26)

7 Comparison of sensitivity

This section demonstrates the sensitivity of the NSBI method and the impact of systematic uncertainties
on the result. The demonstration is performed for a simplified version of an o!-shell Higgs boson signal
strength measurement on simulated samples and considers a subset of the physics processes and systematic
uncertainties that are releveant to a full physics analysis.

7.1 Comparison to histogram-based methods

The NSBI method is compared to two histogram-based analysis strategies on a simulated Asimov dataset,
to demonstrate the gains coming from the parameterised and unbinned nature of the method. The first
histogram method employs a single observable, a signal vs. full process discriminant, that is commonly
used for LHC analyses with quantum interference,

Ofixed = log
𝑄S(𝑅𝐿)

𝑄SBI(𝑅𝐿)
. (27)

Since this ratio is already estimated with ensembles for the NSBI method, no additional networks need to
be trained. This observable is subsequently used to construct a histogram (with 15 bins), and a Poisson

20
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True μ = 0 True μ = 1

• To build confidence intervals, we need to ‘invert the hypothesis test’  
• Generate pseudo-experiments (‘toys’) and determine  &  CI as a function of parameter of interest1σ 2σ

t(μ) t(μ)
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1. Start from a positive weighted reference sample instead 

2. Re-weight to intended parameter point 

3. Throw toys from this sample

6.2 Overcoming negative weights

The above prescription for generating unweighted pseudo-experiments requires the original weights of
the simulated events to be non-negative, 𝐿Asimov

𝐿
→ 0, since the Poisson distribution is only defined for

non-negative values. When the MC simulation sample at a given value of the parameter(s) of interest
includes events with negative weights, an alternate sample may be used which consists only of positive
weights and covers the support of the original sample. The alternate sample, henceforth referred to as
the reweight reference sample, will have to first be reweighted to the desired value of the parameter(s)
of interest. The samples corresponding to the reference defined in Sec 2 may be a convenient choice
for the reweight reference sample because it already covers the entire pre-selection region and can be
defined to comprise only positive-weighted events. Since the reference sample does not need to correspond
to a physical process, a very large sample can be simulated at leading-order in perturbation theory and,
therefore, without negative weights. A large reference sample is not only ideal for the network training but
also to allow the generation of large number of pseudo-experiments following the methods described here.
The reweight reference can be reweighted to the desired value of the theory parameter (using Eq. 10) as

𝐿
rwt-ref
𝐿

↑ 𝐿
Asimov
𝐿

(𝑀) =
𝑁(𝑀)

𝑁rwt-ref
·

𝑂(𝑃𝐿 |𝑀)

𝑂rwt-ref(𝑃𝐿)
· 𝐿

rwt-ref
𝐿

, (26)

where 𝑂rwt-ref(𝑃𝐿) is the probability density and 𝑁rwt-ref the rate for the reweight-reference sample. The
probability density ratio 𝑂(𝑃𝐿 |𝑀)/𝑂rwt-ref(𝑃𝐿) can be obtained from ensembles specifically trained for the
reweighting procedure, following the same prescription as the networks used for inference. The estimation
can be validated using the same diagnostics described in Section 4, and the new samples are thereby
verified to have the same asymptotic properties as the original MC simulation samples. There are also
certain other methods that could be explored to handle negative weighted events [46–48].

6.3 Confidence intervals

Once the pseudo-experiments are generated, the confidence intervals can be constructed following the
standard method [45]. For the analysis described in Section 3, the distribution of 𝑂(𝑄𝑀 |𝑀), representing the
test statistic 𝑄𝑀 for pseudo-experiments generated at a fixed value of 𝑀, is used to determine the one and two
standard-deviation confidence intervals as functions of 𝑀. In the presence of systematic uncertainties, the
values of the global observables 𝑅𝑁 can be sampled from the constraint density. The distribution of test
statistics over many pseudo-experiments is shown in Figure 4 with a 𝑀 of 1. This procedure is repeated
over the range of 𝑀 to construct complete confidence bands as shown in Fig 5. The shapes of these bands
deviate slightly from the asymptotic 𝑆

2 distribution because of the non-linear parameterisation used in the
o!-shell Higgs boson production measurement [13], and are not specifically a feature of NSBI.

The formalism discussed in this section lends itself to further tests for robustness on toy samples generated
by shifting multiple nuisance parameters simultaneously and verifying that the confidence bands remain
well-behaved in such scenarios. Such samples can be generated by a reweighting procedure similar to the
one described in Section 6.2, this time using the probability density ratio that includes nuisance parameters
(Eq. 17),

𝐿
rwt-ref
𝐿

↑ 𝐿
Asimov
𝐿

(𝑀, 𝑇) =
𝑁(𝑀, 𝑇)

𝑁rwt-ref
·
𝑂(𝑃𝐿 |𝑀, 𝑇)

𝑂rwt-ref(𝑃𝐿)
· 𝐿

rwt-ref
𝐿

. (27)
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Population

Random Sample

Sample

Want to estimate mean of population

Re-Sample 
with 

replacement

Sample 
Mean 1

Sample 
Mean 2

Sample 
Mean 3

̂μ

Estimate variance on 
the mean

Image: Source

Estimating the variance on mean: Bootstrapping

https://www.lancaster.ac.uk/stor-i-student-sites/jack-trainer/bootstrapping-in-statistics/
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Quantifying uncertainty on estimated density ratio

• Train an ensemble of networks, each on a Poisson fluctuated version of 
the training dataset

• Ensemble average used as final prediction, estimate the variance on 
mean from bootstrapped ensembles Image: Source

wi → wi ⋅ Pois(1)

https://medium.com/@alexppppp/how-to-train-an-ensemble-of-convolutional-neural-networks-for-image-classification-8fc69b087d3
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Quantifying uncertainty on estimated density ratio

• Train an ensemble of networks, each on a Poisson fluctuated version of 
the training dataset

• Ensemble average used as final prediction, estimate the variance on 
mean from bootstrapped ensembles Image: Source

wi → wi ⋅ Pois(1)

Figure 2: Calibration curve comparing ensemble estimated 𝐿(𝑀𝐿) with the expected value from binned MC simulated
samples, for the validation of the 𝑁SBI1/𝑁ref (left) and 𝑁B/𝑁ref (right) probability density ratio estimations. The
absolute residuals are shown in the bottom panel.

Figure 3: The distribution of neural network output for example events (in di!erent colours) from an ensemble of
classifiers trained to separate B from S samples, evaluated on seven example events from B (left) and seven example
events from S (right). A wider spread indicates a larger uncertainty on that event from the ensemble.

come into play, and this can inform the optimisation of the training strategy. Examples of this spread are
shown in Figure 3. A wider spread indicates a larger ensemble uncertainty. The propagation of these
uncertainties on the estimated probability density ratios, however, requires careful consideration of their
correlated impact on the final parameter estimation. This is described in Section 5.3.

4.4 Additional diagnostics

Additional diagnostic plots may be used to explore the performance of the method, motivated by analysis-
specific considerations. In addition to validating the individual estimated probability density ratios
𝑁 𝑀 (𝑀𝐿)/𝑁ref(𝑀𝐿) that form the mixture model, the combined probability density ratio 𝑁(𝑀𝐿 |𝑂)/𝑁ref(𝑀𝐿) can

13

Distribution of NN predictions for example events

https://medium.com/@alexppppp/how-to-train-an-ensemble-of-convolutional-neural-networks-for-image-classification-8fc69b087d3
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come into play, and this can inform the optimisation of the training strategy. Examples of this spread are
shown in Figure 3. A wider spread indicates a larger ensemble uncertainty. The propagation of these
uncertainties on the estimated probability density ratios, however, requires careful consideration of their
correlated impact on the final parameter estimation. This is described in Section 5.3.

4.4 Additional diagnostics

Additional diagnostic plots may be used to explore the performance of the method, motivated by analysis-
specific considerations. In addition to validating the individual estimated probability density ratios
𝑁 𝑀 (𝑀𝐿)/𝑁ref(𝑀𝐿) that form the mixture model, the combined probability density ratio 𝑁(𝑀𝐿 |𝑂)/𝑁ref(𝑀𝐿) can

13

Distribution of NN predictions for example events
• Propagate with spurious signal method

Constraint term: Gauss(0,1)

fj(μ) → fj(μ + α ⋅ Δ ̂μ(μ))

https://medium.com/@alexppppp/how-to-train-an-ensemble-of-convolutional-neural-networks-for-image-classification-8fc69b087d3
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ATLAS DRAFT

Further, the use of likelihood ratios instead of likelihoods does not prevent the combination of NSBI and425

histogram-based analyses. The combination can be written as426

𝐿comb(𝑀, 𝑁)

𝐿ref
=

𝐿full(𝑀, 𝑁)

𝐿ref
𝐿hist(𝑀, 𝑁). (19)

The test statistic is again independent of 𝐿ref, which appears as a constant o!set in the log-likelihood.427

5.3 E!ects from finite Monte Carlo samples428

When likelihood ratios are estimated with neural networks, an uncertainty may be introduced to account429

not only for the limited number of simulated training samples, but also the stochastic nature of the training430

algorithm. Training ensembles on bootstrapped versions of the training data, as described in Section 2.3431

provides a natural way to describe both of these e!ects.432

Since the estimator for the density ratio is computed as the mean4 prediction from an ensemble of433

networks, the variance of that mean can be estimated using the bootstrapping technique. The mean of each434

bootstrapped ensemble is used to estimate a best fit value of the parameter of interest �̂�, and the standard435

deviation of these estimates determines the variation of the mean ω�̂� due the finite number of events in the436

training sample. The variance can be determined at di!erent values of 𝑀 using di!erent Asimov datasets.5437

Such datasets at any value of the parameter of interest can often be constructed from a set of simulations at438

few basis points in this parameter, using various morphing techniques [8, 37]. The estimated ω�̂� is an439

uncertainty on the modelling of the expected probability density of the physics processes and therefore440

it can be introduced as a systematic uncertainty following the spurious signal approach [38] frequently441

employed in unbinned LHC analyses. The nuisance parameter 𝑁stat with a Gaus(0, 1) constraint term is442

introduced to Eq. 16 with the modification443

𝑂 𝐿 (𝑀) → 𝑂 𝐿 (𝑀 + 𝑁stat · ω�̂�(𝑀)). (20)

5.4 Calculation of pulls and impacts444

While the unbinned nature of NSBI poses computational challenges to traditional statistical tools for445

evaluating and analysing the profile likelihood ratio, this framework enables the direct application of446

modern computational tools that simplify calculations. The full likelihood ratio (Eq. 17) and the test447

statistic (Eq. 18) are di!erentiable functions. Their dependence on the parameters of interest 𝑀 and nuisance448

parameters 𝑁 is introduced through di!erentiable functions, and the probability density ratios are built449

from neural networks which are themselves di!erentiable. It is natural to leverage auto-di!erentiation450

techniques [39] to perform the profiling and to calculate the Hessian matrix of 𝐿full(𝑀, 𝑁).451

The estimation of pulls and impacts relies on the calculation of the covariance matrix (we identify the452

parameter of interest with index 0 to simplify the notation),453

4 The median, known to be unbiased and robust to outliers, could also be used.
5 An Asimov dataset is one for which the application of any unbiased estimator for all parameters will provide the true values [36].

In practice, an approximation of such a dataset can be constructed using a su"ciently large number of simulated samples with
appropriate event weights.
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Hessian:

ATLAS DRAFT

⇠=< =

1
2

m
2
_

mU=mU<
(b̀,bU)

��1

, (25)

based on inverse of the Hessian matrix at the maximum likelihood estimate (b̀,bU), and where _(`, U) =357

�2 ln(!full(`, U)/!ref). The calculation of the Hessian matrix can be parallelised on computing clusters [18].358

The pull of the NP U is calculated as,359

bU: � U
0
:

p
⇠::

. (26)

This is the definition often adopted in histogram-based analysis with the MINOS procedure [27], which360

defines pulls based on approximate profile likelihood ratio confidence intervals, with the exact computation361

reserved only for pathological cases.362

The impact of a nuisance parameter on a measurement is traditionally computed by re-running the entire363

likelihood minimisation after fixing the nuisance parameter at a few values. This calculation is more364

expensive since it requires multiple minimisations of log-likelihood ratio. Here, the maximum likelihood365

estimate of ` is re-computed for different fixed value of U: to estimate �: = b̀(bU: ±
p
⇠::) � b̀(bU:). With366

auto-differentiation, a local estimate of the post-fit impact can be estimated as,367

�: =
m b̀
mU:

⇥
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2
_

m
2
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(b̀,bU)
��1

m
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⇠:: ,

(27)

considerably simplifying the analysis of the profile likelihood ratio, and reserving the finite-difference368

estimate to pathological cases. A similar definition has been proposed for a consistent separation between369

statistical and systematic uncertainty in Ref. [28]. The local definition also avoids ambiguities that exist in370

models with multiple local minima. The pre-fit impact can be calculated by replacing (b̀,bU 9) ! (`0, U
0
9 )371

and
p
⇠:: ! XU: . Further details about the these calculations for NSBI using auto-differentiation372

techniques are described in Ref. [18].373

6 Neyman Construction374

In frequentist statistics, a confidence interval derived from a measurement is expected to cover the true value375

with a specified probability (e.g., 68% or 95% of the time). The procedure for building such confidence376

intervals, referred to as the Neyman construction, involves the inversion of the hypothesis tests with the377
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Appendix684

A Interpolation Function685

Section 5 discusses the use of interpolation methods for systematic uncertainties. A common choice for the686

interpolation function to parameterise the impact of nuisance parameters at the LHC is [2]687
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where the six coe!cients 𝑁𝑃 of the polynomial in 𝑀𝑀 are determined uniquely from the requirements688

that 𝐿 𝐿 (𝑀𝑀) be continuous and its first and second derivatives be continuous at 𝑀𝑀 = ±1. The same689

interpolation strategy and continuity requirements can be used to interpolate 𝑂 𝐿 (𝑃𝑄 , 𝑀𝑀),690
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Figure 11(a) provides a comparison of the values of the test statistic 𝐿𝐿o!-shell assuming a single parameter of
interest 𝑀o!-shell between the NSBI result and the histogram-based hypothesis using only the𝑁→

↑ 𝑂𝑂 ↑ 4𝑃
decay channel. Figure 20 shows the same comparison after combining the result in the 𝑁

→
↑ 𝑂𝑂 ↑ 2𝑃2𝑄

channel. Table 7 compares the impact of di!erent groups of systematic uncertainties in the combined result
by using the method described in [17]. The impact of a group of systematic uncertainties is assessed by
fixing the associated group of NPs and re-estimating the value of 𝑀o!-shell for which the value of the test
statistic is equal to 4. This method highlights the importance of di!erent sources of uncertainties in the
signal-dominated region.

Table 7: The impact of most important systematic uncertainties on the observed upper value of 𝑀o!-shell for which
𝐿𝐿o!-shell = 4, obtained by the combined fit. This value corresponds to the two standard deviation upper limit of 𝑀o!-shell
in the asymptotic approximation. The first column denotes the systematic uncertainty that was excluded from the
fit. The last row gives the nominal upper limit, where all uncertainties are included. The further the upper limit is
deviating from the last row value, the more important that uncertainty is.

Systematic Uncertainty Fixed 𝑀o!-shell Value at which 𝐿𝐿o!-shell = 4
NSBI analysis Histogram-based

All (stat-only) 1.96 2.13
Parton shower uncertainty for 𝑅𝑅 ↑ 𝑂𝑂 (normalization) 2.07 2.26
Parton shower uncertainty for 𝑅𝑅 ↑ 𝑂𝑂 (shape) 2.12 2.29
NLO EW uncertainty for 𝑆𝑆 ↑ 𝑂𝑂 2.10 2.27
NLO QCD uncertainty for 𝑅𝑅 ↑ 𝑂𝑂 2.09 2.29
Parton shower uncertainty for 𝑆𝑆 ↑ 𝑂𝑂 (shape) 2.12 2.29
Jet energy scale and resolution uncertainty 2.11 2.26
None (full result) 2.12 2.30

Figure 21(a) shows a comparison between the two analyses for the values of the test statistic for the
combination of the o!-shell and on-shell Higgs boson production measurements for the 𝑁 ↑ 𝑂𝑂 ↑ 4𝑃
decay channel alone as a function of 𝑇𝑀 while profiling 𝑈𝑀𝑁𝑁 . Figure 21(b) shows the same comparison
after combination with the result in the 𝑁

→
↑ 𝑂𝑂 ↑ 2𝑃2𝑄 decay channel.

Figure 22(a) and 22(b) compares the values of the test for 𝑉𝑂𝑂 and 𝑉𝑃𝑃 with the results from the
histogram-based analysis.
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(3)

where 𝑀 is a vector of reconstructed variables which are defined in Section 5.2, and 𝐿X(𝑀) and 𝑂X are
the probability density function and the expected yield for process X, respectively. The expected number
of events 𝑂(𝑁

ggF
o!-shell, 𝑁

EW
o!-shell) can be written as a function of the expected number of events for each

process 𝑂X Ṫhe term 𝐿NI(𝑀) represents the probability density of the event {𝑀} given processes that do
not interfere with the ggF and EW processes described above. The leading non-interfering process is the
𝑃𝑃 ↑ 𝑄𝑄 ↑ 4𝑅 production via a 𝑆-channel exchange at LO. Triboson 𝑇𝑇𝑇 processes, including those
from top-quark decays 𝑆𝑆𝑇 , are subleading processes, but are also included in the analysis. Figure 3(a)
shows the LO Feynman diagram of the leading non-interfering 𝑃𝑃 ↑ 𝑄𝑄 process and Figure 3(b) shows the
corresponding LO Feynman diagram of the subleading non-interfering top-quark induced 𝑇𝑇𝑇 process.
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Figure 3: LO Feynman diagrams for non-interfering background processes. Diagram (a) shows the leading 𝑃𝑃𝑄𝑄

process and diagram (b) shows the top-quark induced sub-leading 𝑇𝑇𝑇 process. The leptonic decays of the 𝑄 and 𝑊

bosons are not shown.

Monte Carlo (MC) simulated samples are used to describe the expected event yields 𝑂X and probability
densities 𝐿X(𝑀) in Eq. 3. Due to the technical challenges associated to the e"cient production of
interference-only MC simulations [46], the interference terms in Eq. 3 are not generated separately, but
inferred from samples generated with signal, interference, and background terms (SBI sample). For ggF
production, a single SBI sample is generated and the interference term 𝑂

ggF
𝐿 𝐿

ggF
𝐿 (𝑀) is rewritten as:

𝑂
ggF
I 𝐿

ggF
I (𝑀) = 𝑂

ggF
SBI𝐿

ggF
SBI(𝑀) ↓ 𝑂

ggF
S 𝐿

ggF
S (𝑀) ↓ 𝑂

ggF
B 𝐿

ggF
B (𝑀). (4)

In the case of EW production, it is impossible to generate an o!-shell signal-only sample. Due to the
diagrams shown in Figure 2(b) and Figure 2(c), where a 𝑋-channel Higgs boson propagator is absent, there
is always contamination of on-shell events in the production. Instead of generating signal and interference
samples, two linear combinations (EWSBI1 and EWSBI10) are used to model the EW component:

7

two possible pairings, the one that includes the lepton pair with mass closest to that of the 𝐿 boson mass
is chosen. In each quadruplet, the lepton pair with mass closest to the 𝐿 boson mass, 𝑀𝐿1 , is referred to
as the leading pair and required to have 50 < 𝑀𝐿1 < 106 GeV. The sub-leading pair mass, 𝑀𝐿2 , must
satisfy 50 < 𝑀𝐿2 < 115 GeV when 𝑀4𝑀 > 190 GeV. Due to the increased probability of one 𝐿 boson
being o!-shell at lower values of 𝑀4𝑀 , the lower threshold for 𝑀𝐿2 decreases linearly from 50 GeV at
𝑀4𝑀 = 190 GeV to 45 GeV at 𝑀4𝑀 = 180 GeV.

Events are described in the analysis by 14 observables, summarized in Table 3. The 14 observables provide
a complete description of the reconstructed final state phase space. The three-momentum of the fermion
(antifermion) in the 𝐿1 decay is defined as q11 (q12). Similarly, the three-momentum of the fermion
(antifermion) in the 𝐿2 decay is defined as q21 (q22). The three-momentum of 𝐿1 (𝐿2) is defined as q1
(q2). All three-momenta are defined in the rest frame of the quadruplet. Jets are ordered in 𝑁T and their
momenta are defined in the laboratory reference frame.

The observables on Table 3 are the components of the vector 𝑂 in Eq. 3. The observables 𝑀 𝑁 𝑁 , 𝑃 𝑁 𝑁 , and 𝑄 𝑁 𝑁

related to the leading dijet system, i.e., the two jets with highest 𝑁T in the event, are only well-defined for
events with at least two reconstructed jets. For events with fewer jets, the value of these observables are
fixed at the median of the corresponding distribution for events with at least two reconstructed jets. The
observable 𝑅jets is used for classification of the non-interfering background in Eq. 7. All events with more
than two jets are described by 𝑅jets = 2.

Table 3: Definition of the observables to describe an event. The observables are defined with respect to the ATLAS
coordinate system. The vectors q1, q2, q11, q21, n1, n2, and nsc are defined in Section 5.2.

Variable Definition
𝑀4𝑀 quadruplet mass
𝑀𝐿1 𝐿1 mass
𝑀𝐿2 𝐿2 mass

cos 𝑆→ cosine of the Higgs boson decay angle [q1 · n𝑂/|q1 |]
cos 𝑆1 cosine of the 𝐿1 decay angle [↑(q2) · q11/(|q2 | · |q11 |)]
cos 𝑆2 cosine of the 𝐿2 decay angle [↑(q1) · q21/(|q1 | · |q21 |)]
ω1 𝐿1 decay plane angle [cos↑1

(n1 · nsc) (q1 · (n1 ↓ nsc)/(|q1 | · |n1 ↓ nsc |)]
ω angle between 𝐿1, 𝐿2 decay planes [cos↑1

(n1 · n2) (q1 · (n1 ↓ n2)/(|q1 | · |n1 ↓ n2 |)]
𝑁

4𝑀
𝑃 quadruplet transverse momentum

𝑇
4𝑀 quadruplet rapidity

𝑅jets number of jets in the event
𝑀 𝑁 𝑁 leading dijet system mass
ε𝑃 𝑁 𝑁 leading dijet system pseudorapidity
ε𝑄 𝑁 𝑁 leading dijet system azimuthal angle di!erence

The vectors n1 and n2 normal to the 𝐿1 and 𝐿2 decay planes and the vector nsc normal to the Higgs boson
decay plane are defined as:

n1 =
q11 ↓ q12
|q11 ↓ q12 |

, n2 =
q21 ↓ q22
|q21 ↓ q22 |

, nsc =
n𝑂 ↓ q1
|n𝑂 ↓ q1 |

, (8)

where n𝑂 is the unit vector in the 𝑈 direction. These vectors are used to build angles that are sensitive to
the spin and parity of the quadruplet. Their geometrical visualization [79] is given in Figure 4, where the
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z

q→
12

q→
11

q→
22
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!1 !

Figure 4: Representation of the angular observables used to describe the probability density ratio of each event. The
three-momenta of the fermions (q→

11, q→

21) and antifermions (q→

12, q→

22) are shown in their parent rest-frames, and the
three-momenta of the vector bosons (q1, q2) are shown in the quadruplet rest frame.

three-momentum are shown in each particle’s parent rest frame for clarity. Figure 5 shows the comparison
between observed and expected background distributions for the 𝐿4𝐿 and 𝐿 𝑀 𝑀 observables.

6 Neural simulation-based inference

Several analyses at the LHC use multinomial probability densities (histograms) to describe each component
𝑀X(𝑁) of the probability model used to interpret the data. The commonly used framework for histogram-
based analyses in ATLAS is described in detail in Ref. [80] and was used in the previous result on
the o!-shell Higgs boson production [17]. The multinomial modeling treats all events inside a bin as
indistinguishable, which leads to a loss in statistical power. In non-linear analyses, like the measurements
of processes with large quantum interference, a single observable cannot be optimal for all parameter values
and complete dimensional reduction cannot be achieved without information loss. These losses can be
partially mitigated by using approximations to optimal observables [26], by increasing the dimensionality
of the histograms, and by reducing the bin width. Recent measurements of the o!-shell Higgs boson
production in the 𝑂

→
↑ 𝑃𝑃 ↑ 4𝑄 channel by the CMS collaboration [31] have used all of these strategies

to improve the significance of the result.

These mitigation strategies are limited by the finite number of simulated events and by the so-called curse
of dimensionality. Practical considerations may reduce the accuracy of the multinomial approximation and
reduce the power of the statistical inference, especially in regions with high signal significance (signal
regions). Regions with low signal significance (control regions), traditionally used for the description of
backgrounds and systematic uncertainties, are less sensitive to these limitations.

13
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(a) (b)

Figure 5: Comparison between observed and expected distribution of two observables used to describe events: (a) the
four-lepton invariant mass and the (b) invariant mass of the two leading jets. The expected distributions for 𝐿𝐿𝑀𝑀 ,
ggF SBI, EW SBI1 and other backgrounds are shown as stacked histograms, and the expected signal (interference)
is shown as a red (blue) line. The background normalization is estimated under the SM hypothesis. The lower
panels show the ratio of data to expectation. The hashed band shows the total systematic uncertainty on the expected
distribution. The last bin contains overflow events.

Neural network approximations of probability densities and probability density ratios can out-perform
histogram approximations when high-dimensional parameter spaces are considered. The use of NNs for
statistical inference is known as neural simulation-based inference (NSBI) [26–29]. This analysis uses a
particular version of NSBI adapted to the type of parameter inference performed at the LHC to model
events in the signal region. A self-contained description of the method is given below, and more details
can be found in Ref. [30].

6.1 Signal and control regions

An initial multi-class classification NN is trained to split the events into signal and control regions using
the observables defined in Table 3. This NN has five hidden layers each with 1,000 neurons and a swish
activation function [81]. The output layer has five neurons with a softmax [𝑁

→𝐿𝐿/
∑

𝑀 𝑁
→𝐿 𝑀 ] activation

function. The NN is trained with a multi-class cross-entropy loss corresponding to the five processes
used in the training: ggF S, ggF B, EW S, EW B, and 𝐿𝐿 ↑ 𝑀𝑀 . The EW S process is defined as the EW
vector-boson fusion process (diagram shown in Figure 2(a)) without the associated production process
(diagram shown in Figure 2(c)). While this process does not provide a full description of the EW production
of o!-shell Higgs bosons, it provides a good approximation for defining control and signal regions. The
preselection discriminant 𝑂pre(𝑃) is defined as:

𝑂pre(𝑃) = log
𝑄

ggF
pre, S(𝑃) + 𝑄

EW
pre, S(𝑃)

𝑄
ggF
pre, B(𝑃) + 𝑄

EW
pre, B(𝑃) + 𝑄pre, 𝑁�̄�𝑂𝑂 (𝑃)

, (9)
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where 𝐿(𝑀) denotes the score function of the NN. The signal region (SR) is defined as events satisfying
𝑁pre(𝑀) > →0.85. Events failing this condition define the control region (CR). The CR is largely dominated
by 𝑂𝑂 ↑ 𝑃𝑃 events and can be used to constrain the parameters 𝑄0 𝐿 ,1 𝐿 ,2 𝐿

𝑀�̄�𝑁𝑁 . Figure 6(a) shows a comparison
between the observed and expected distribution of the observable 𝑁pre(𝑀) used to define the SR and the
CR. Figure 6(b) shows a comparison of the observed and expected 𝑅jets distribution.

(a) (b)

Figure 6: (a) Comparison between observed and expected distribution of the preselection discriminant 𝑁pre (𝑀). (b)
Comparison between observed and expected distribution of 𝑅jets. The expected distributions for 𝑂𝑂𝑃𝑃 , ggF SBI,
EW SBI1 and other backgrounds are shown as stacked histograms, and the expected signal (interference) is shown as
a red (blue) line. The background normalization is estimated under the SM hypothesis The lower panels show the
ratio of data to expectation. The hashed band shows the total systematic uncertainty on the expected distribution.
The last bin of panel (b) contains overflow events.

In the CR, only the 𝑅jets observable is used to describe the probability model while in the SR, all 14
observables listed in Table 3 are used to create an NSBI model. The probability density ratio of each
process X (where X is one of the processes in Table 1) and a fixed reference process, 𝑆X(𝑀)/𝑆ref(𝑀),
is estimated separately with NNs. The reference process is chosen as a mixture of the ggF signal and
EW SBI10 processes:

𝑇ref𝑆ref(𝑀) = 𝑇
ggF
S 𝑆

ggF
S (𝑀) + 𝑇

EW
SBI10

𝑆
EW
SBI10

(𝑀), (10)

and does not depend on any parameter like 𝑈o!-shell. While machine learning methods exist that would
allow to directly estimate the probability densities 𝑆X(𝑀) [82] in Eq. 3, the estimation of probability
density ratios [83] is a simpler numerical problem and is used in this analysis. As will be shown below,
estimating probability density ratios between di!erent hypotheses is su"cient for a frequentist statistical
data analysis [84], as 𝑆ref(𝑀) cancels out in the likelihood ratio test statistic. The choice of reference sample
is driven by the phase space where the method is applied [30]. The density ratio 𝑆X(𝑀)/𝑆ref(𝑀) can only
reliably be estimated when 𝑆ref(𝑀) > 0, which is ensured by the preselection condition 𝑁pre(𝑀) > →0.85
without significantly reducing the power of the analysis.
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2. Data Augmentation

The network comprises 10 hidden layers, each with 64
nodes, a ReLU activation, and L2 kernel regularizers for
all but the first hidden layer and a final layer with sig-
moid activation. The network was trained with an Adam

(a) p⌧t (GeV)

(b) �MET
centrality

0 50 100 150 200 250

mlep,MET
t (GeV)

0

10000

20000

30000

N
um

be
r

of
E
ve

nt
s

Z/�� ! �lep�had,

tt̄, W + jets
HiggsML Dataset

Z/�� ! �lep�had,

tt̄, W + jets
HiggsML Dataset

Z/�� ! �lep�had,

tt̄, W + jets
HiggsML Dataset

z=0.9

z=1.0

z=1.1

(c) mlep,MET
t (GeV)

FIG. 7: Distribution of physics variables for three
values of the nuisance parameter which controls the
absolute tau lepton energy scale, z = {0.8, 1, 1.1} for
background processes. a the transverse momentum of
the hadronic ⌧ , b the centrality in � of the missing

transverse energy vector with respect to the hadronic ⌧

and the lepton, c transverse mass of the missing
transverse energy and the lepton.

optimizer [70], BCE loss and a batch size of 4096.
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FIG. 8: Distribution of physics variables for three
values of the nuisance parameter which controls the
absolute tau lepton energy scale, z = {0.8, 1, 1.1} for

signal. a the transverse momentum of the hadronic ⌧ , b
the centrality in � of the missing transverse energy

vector with respect to the hadronic ⌧ and the lepton, c
transverse mass of the missing transverse energy and

the lepton.

Experimental uncertainties:  
Eg. Inaccuracies in the calibration of our detector

• Current analyses strategies optimised while ignoring 
systematic uncertainties 

• Added in post-facto 
• Leads to loss in sensitivity compared to uncertainty-

aware optimisation (see details)
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and classification power was made in model selection,
finding the largest value of λ that did not deteriorate
performance. Minimal hyperparameter tuning was per-
formed beyond tuning λ.

B. Results

The negative log-likelihood [Eq. (4)] is calculated as a
function of the parameter of interest μ and the nuisance
parameter z. Examples are shown in Fig. 5 using templates
from the baseline and uncertainty-aware classifiers. Due to
its assumption that z ¼ π

4 in the calculation of the classifier
score, the likelihood from the baseline classifier can
strongly exclude z ¼ π

4 when evaluated on a dataset
generated with z ¼ π

2, but finds z ¼ 0; π2 equally likely.
The uncertainty-aware classifier, on the other hand, is also
able to exclude the low z region.
Since the measurement of the nuisance parameter is not

the final objective, it is in fact the profile likelihood,
LpðμÞ ¼ maxz Lðμ; zÞ, that is the most relevant metric
for determining the relative power of the various
approaches. The dependence of the likelihood on the
nuisance parameter is thus profiled away.
The profile likelihood for each method is shown in Fig. 6

for data generated with z ¼ π
4 and z ¼ π

2. In the case of
z ¼ π

4, which matches the assumption of the baseline
classifier, the uncertainty-aware and baseline classifiers

both achieve ideal performance. The adversarial and data-
augmentation approaches are somewhat weaker due to the
inherent compromises of their methods.
When evaluated on data generated with z ¼ π

2, in conflict
with the assumption of the baseline classifier, the perfor-
mance of all approaches other than the uncertainty-aware
classifier deteriorate significantly. The performance of the
data-augmented classifier depends on the range of z values
available in training, with performance being strongest near
the center of the range; one could shift the range to improve
performance at the extreme values. No setting of the
adversarially trained classifier was found to perform well
for datasets with both values of z.

(a)

(c) (d)

(b)

FIG. 5. The negative log-likelihood [Eq. (4)] as a function of
the parameter of interest μ and the nuisance parameter z for two
example datasets, using templates from the baseline (top) and
uncertainty-aware classifier (bottom). In the left column, the data
are generated with z ¼ π

4, which matches the assumption made by
the baseline classifier. In the right column, the data are generated
with ¼ π

2. The red dot indicates the maximum likelihood estimate
which coincides with the true value of μ, z in each case. Note the
different z axis scales for the two classifiers in the bottom row.

(a)

(b)

FIG. 6. The profile likelihood maxz Lðμ; zÞ as a function of the
parameter of interest, μ for likelihoods calculated with templates
built from the various classifiers. Narrower curves indicate more
precise measurements having accounted for systematic and
statistical uncertainties. The baseline classifier assumes z ¼ π

4,
and matches the performance of the uncertainty-aware classifier
in data generated with z ¼ π

4 (top). In data generated with z ¼ π
2,

the power of all classifiers other than the uncertainty-aware
classifier become significantly weaker.

GHOSH, NACHMAN, and WHITESON PHYS. REV. D 104, 056026 (2021)

056026-6

Difference b/w post-facto and uncertainty-aware

Narrower is better
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Which neutron stars should we measure next ?
9

particular ordering of the stars, and works out-of-the-box for a growing set of observed neutron stars without the need
for retraining any networks. To demonstrate this, we present the marginal posterior distributions for one example
EoS in Fig. 5, for 5, 10, and 20 observed neutron stars, and with loose uncertainties on the nuisance parameters.

4.8 5.0
�1

�2.00

�1.95

�1.90

�
2

�2.0 �1.9
�2

5 stars

10 stars

20 stars

FIG. 5: Corner plot depicting the posterior distribution of the parameters �1 and �2 of one example EoS. The
posterior is computed based on the simulated spectra of 5 (olive), 10 (blue), or 20 (purple) stars with the nuisance
parameters known with the uncertainties in Tab. II of the loose scenario. The ground-truth parameter values are

depicted as black crosses/lines.

The figure illustrates that the increase of available spectra significantly refines the inference of the EoS parameters.
Notably, the transition from 5 to 10 observed spectra has a substantial impact on the posterior constraints, reducing
the standard deviation of �1 by 23% from 0.061 to 0.047, while further increasing the number of measurements to 20
shows a comparatively smaller reduction in the standard deviation by only 6.4% to 0.044 for the given example. For
�2 the increase in accuracy from 10 to 20 observations is even smaller. It is worth noting that in the numerical imple-
mentation of Hamiltonian Monte Carlo for posterior sampling, the computation time is predominantly consumed by
the evaluation of the likelihood and its gradient. While the availability of more observations increases the per-iteration
computational time in sampling the posterior, it also speeds up the convergence of the algorithm. Furthermore, HMC
algorithms can easily be scaled to thousands of dimensions, hence we do not anticipate the dimensionality to be a
limiting factor in the scaling of our approach.

C. Average performance on test set

After discussing one example EoS, now we turn to the average performance of NLE with a test set of simulated
data from 100 di↵erent equations of states. To compare the average performance to the previous ML approaches that
infer the neutron star EoS directly from telescope spectra described in Sec. III, we use the same accuracy measure as
Refs. [71, 72]. For each EoS in the test set, we simulate 10 spectra with random nuisance parameters. Based on the
spectra and the prior nuisance parameter information, we then sample the posterior using the methodology outlined
in Sec. IV. From the marginal posterior distributions, similar to the example in Fig. 2, we determine the maximum-
a-posteriori estimates (MAP)2 for the two EoS parameters (�1,pred,�2,pred) and compare them to the ground-truth
values (�1,truth,�2,truth). The distributions of the di↵erences between the marginal MAP estimate and the ground-
truth values, (�1,pred � �1,truth,�2,pred � �2,truth), on the test data set are depicted in Fig. 6. As before, the equation

2
Note that this is the maximum-a-posteriori estimate of the marginal and not of the full posterior.

Test potential improvement in sensitivity coming from new 
measurements 
Could inform decisions on which stars to measure next!
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TABLE III: Average accuracy for the prediction of neutron star EoS parameters �1 and �2. Shown are the means
(µ) and standard deviations (�) of the distributions in Fig. 6, i.e., of the di↵erences between the predicted

maximum-a-posteriori and ground-truth values. Both standard deviations are combined to �tot according to Eq. (8).
The neural likelihood estimation (NLE) approach is compared to three previous approaches; neural networks that

regress the EoS parameters from the spectra (NN(Spectra)) and from M,R estimates by xspec (NN(M,R via
xspec)), both from Ref. [71], as well as an approach using an approximate likelihood that incorporates two neural

networks, ML-LikelihoodEOS, from [72]. In the true scenario, the nuisance parameters are fixed to their exact values;
in the tight and loose cases, they are drawn from the narrow or wide priors in Tab. II.

�1,pred � �1,truth �2,pred � �2,truth Combined

p(⌫) Method µ � µ � �tot

true ML-LikelihoodEOS -0.02 0.066 0.01 0.070 0.096

NN(Spectra) -0.02 0.066 0.01 0.075 0.099

NN(M,R via xspec) -0.03 0.065 0.01 0.055 0.085

NLE 0.00 0.056 -0.01 0.070 0.090

tight ML-LikelihoodEOS -0.02 0.078 0.03 0.081 0.112

NN(Spectra) 0.02 0.085 -0.02 0.077 0.115

NN(M,R via xspec) -0.03 0.081 0.01 0.056 0.098

NLE 0.00 0.066 -0.02 0.071 0.097

loose ML-LikelihoodEOS -0.04 0.089 0.03 0.081 0.120

NN(Spectra) -0.03 0.131 -0.01 0.078 0.152

NN(M,R via xspec) -0.03 0.123 0.01 0.058 0.136

NLE 0.00 0.085 -0.01 0.074 0.113

true

tight

loose

ML-LikelihoodEOS
NN(Spectra)
NN(M, R via xspec)
NLE

ML-LikelihoodEOS
NN(Spectra)
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NLE
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NN(M, R via xspec)
NLE

�1,pred � �1,truth �2,pred � �2,truth �tot
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FIG. 7: Illustrated mean and standard deviation of the di↵erence between the predicted maximum-a-posteriori
values to the ground-truth values for the three di↵erent scenarios from Tab. III.

(ii) Neural likelihood estimation allows for amortization; after training the neural density estimators once, the
inclusion of additional observations is straightforward, see Sec. V B. In addition, extending to additional stars
is inexpensive relative to other methods, which require integrating over estimated mass-radius posteriors to
construct likelihoods [39, 50], such as with Kernel Density Estimation techniques.

(iii) Learning the likelihood instead of the posterior allows combination with likelihoods from other data [110], e.g.,
constraints from low-energy nuclear theory at small densities [111, 112], perturbative QCD at high densities
[113, 114], mass measurements from Shapiro time delays [28–30], mass-radius constraints from analyses of the
NICER telescope [31–33] or gravitational wave signals from binary neutron star mergers [34, 35].

Realistic scenarios:

Pretend that nuisance 
parameters known 

exactly

NP priors


