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Measuring quantum interference in the off-shell Higgs to flour leptons process
with Machine Learning

Aishik Ghosh
Université Paris-Saclay, CNRS/IN2P3, I1JCLab, 91405 Orsay, France

Abstract — The traditional machine learning approach to optimize a particle physics measurement breaks down
in the presence of quantum inference between the signal and background processes. A recently developed family of
physics-aware machine learning techniques that rely on the extraction of additional information from the particle
physics simulator to train the neural network could be adapted to a signal strength measurement problem. The
networks are trained to directly learn the likelihood or likelihood ratio between the test hypothesis and null
hypothesis values of the theory parameters being measured. We apply this idea to a signal strength measurement
in the off-shell Higgs to four leptons analysis for the Vector Boson Fusion production mode from simulations of
the high energy proton-proton collisions at the Large Hadron Collider. Promising initial results indicate that a
model trained on simulated data at different values of the signal strength outperforms traditional approaches in

the presence of quantum interference.
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Figure 1: Feynman Diagrams of the processes under
study, (a) signal Higgs diagram, (b) interfering back-
ground diagram

The Heisenberg uncertainty principle of quantum
mechanics (cgoy > %) allows particles to become “vir-
tual”, with a mass going far away from the one de-
scribed by special relativity’s mass-energy equivalence
formula E? — |p]2¢? = mic* (where the energy E is
given in terms of the rest mass my and momentum p’
of the particle and ¢ is the speed of light in vacuum).
They and are refereed to as “off-shell” particles. Quan-
tum mechanics also prescribes that given an initial and
final state, all possible intermediate states can and will
occur, and they may interfere with one another.

A study of the off-shell Higgs boson decaying to two
Z bosons that decay to four leptons (henceforth referred
to as “offshell h4l”), such the 2018 study [2] in the AT-
LAS Collaboration [1] is one of the most interesting
studies in high energy particle physics because it allows
to break certain degeneracies between the Higgs cou-
plings, and constrain the Higgs width (under certain
model dependent assumptions) that cannot be disen-
tangled by an on-shell measurement alone. An update
to the previous ATLAS study using the entire Run2

171

data will have develop innovative methodology to deal
with quantum interference between the Higgs Feynman
diagram (referred to as “signal”’) and other standard
model processes (referred to as “background”). While
the previous round used simple cuts to define the region
of interest, we investigate a recently developed family of
physics-aware machine learning techniques to improve
the sensitivity of such an analysis. The two main dia-
grams studied here are shown in Figure 1. Other signal
and background processes will be included in future
studies. The objective of the analysis is to measure the
“signal strength”, u, of the signal, which is a proxy for
measuring how strongly the Higgs interacts with other
fields. Interestingly, the usual notion that the signal
strength corresponds to the ratio of the observed in
data to the expected in Monte Carlo simulation signal
yield breaks down in the presence of quantum interfer-
ence.

This study is performed with data simulated with
MadGraph5_aMC [3|, Pythia 8 [4] and Delphes 3 [5].

2 Machine Learning in a signal
strength measurement

Traditionally, in analyses without quantum interfer-
ence, one can train a machine learning classifier (such
as a Boosted Decision Tree) to separate the signal and
background samples (referred to as “events”) that are
simulated separately, and under the assumption that
it is an optimal classifier, due to the Neyman-Pearson
lemma [6], one can get the likelihood ratio [7] between a
test hypothesis and the null hypothesis from the output
of the classifier. The output of the classifier can be used
for a fit to measure the signal strength, p, optimally.
In the presence of quantum interference, this strategy
is no longer optimal. Figure 2 shows how a physics
variable (the invariant mass of the four leptons) that is
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An implementation of Neural Simulation-Based

Inference for Parameter Estimation in ATLLAS

The ATLAS Collaboration

Neural Simulation-Based Inference (NSBI) is a powerful class of machine learning (ML)-based
methods for statistical inference that naturally handles high-dimensional parameter estimation
without the need to bin data into low-dimensional summary histograms. Such methods are
promising for a range of measurements, including at the Large Hadron Collider (LHC), where
no single observable may be optimal to scan over the entire theoretical phase space under
consideration, or where binning data into histograms could result in a loss of sensitivity.
This work develops an NSBI framework for statistical inference, using neural networks to
estimate probability density ratios, which enables the application of NSBI to a full-scale LHC
analysis. It incorporates a large number of systematic uncertainties, quantifies the uncertainty
coming from finite training statistics, develops a method to construct confidence intervals,
and demonstrates a series of intermediate diagnostic checks that can be performed to validate
the robustness of the method. As an example, the power and feasibility of the method are
demonstrated on simulated data for a simplified version of an off-shell Higgs boson couplings
measurement in the four-leptons final states. This NSBI framework is an extension of the
standard statistical framework used by LHC experiments and can benefit a large number of
physics analyses.

© 2024 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
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The ATLAS Collaboration

A measurement of off-shell Higgs boson production in the H* — ZZ — 4¢ decay channel
is presented. The measurement uses the 140 fb~! of integrated luminosity collected by the
ATLAS detector during the Run 2 proton-proton collisions of the Large Hadron Collider at
/s = 13 TeV and supersedes our previous result in this decay channel using the same dataset.
The data analysis is performed using a neural simulation based-inference method, which builds
per-event likelihood ratios using neural networks. The observed (expected) off-shell Higgs
boson production signal strength in the ZZ — 4¢ decay channel is 0.87t%7§ (1.00%'.%‘;) at
68% CL. The previous result was not able to achieve expected sensitivity to quote a two-sided
interval at this CL. The expected plus-side uncertainty is reduced by 10%. The evidence for
off-shell Higgs boson production has an observed (expected) significance of 2.5¢0" (1.307) using
the ZZ — 4¢ decay channel only. The expected significance score is 2.6 times that of our
previous result using the same dataset. When combined with our most recent measurement in
Z7Z — 2{2v decay channel, the evidence for off-shell Higgs boson production has an observed
(expected) significance of 3.70 (2.40°). The off-shell measurements are combined with the
measurement of on-shell Higgs boson production to obtain constraints on the Higgs boson
total width. The observed (expected) value of the Higgs boson width is 4.3’:21'.79 4. lt%'_i) MeV
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Measurement of off-shell Higgs boson production in
the H* —» ZZ — 4f decay channel using a neural

simulation-based inference technique with the
ATLAS detector at Vs = 13 TeV

The ATLAS Collaboration

A measurement of off-shell Higgs boson production in the H* — ZZ — 4¢ decay channel
is presented. The measurement uses the 140 fb~! of integrated luminosity collected by the
ATLAS detector during the Run 2 proton-proton collisions of the Large Hadron Collider at
/s = 13 TeV and supersedes our previous result in this decay channel using the same dataset.
The data analysis is performed using a neural simulation based-inference method, which builds
per-event likelihood ratios using neural networks. The observed (expected) off-shell Higgs
boson production signal strength in the ZZ — 4¢ decay channel is 0.87t%7§ (1.00%‘%‘;) at
68% CL. The previous result was not able to achieve expected sensitivity to quote a two-sided
interval at this CL. The expected plus-side uncertainty is reduced by 10%. The evidence for
off-shell Higgs boson production has an observed (expected) significance of 2.5¢0" (1.307) using
the ZZ — 4¢ decay channel only. The expected significance score is 2.6 times that of our
previous result using the same dataset. When combined with our most recent measurement in
Z7Z — 2{2v decay channel, the evidence for off-shell Higgs boson production has an observed
(expected) significance of 3.70 (2.40°). The off-shell measurements are combined with the
measurement of on-shell Higgs boson production to obtain constraints on the Higgs boson
total width. The observed (expected) value of the Higgs boson width is 4.3’:21'.79 4. lt%'_i) MeV
at 68% CL.

FE-mail: len.brandes@tum.de, cmodi@flatironinstitute.org,
aishikghosh@cern.ch, dfarrell@sdsu.edu, lindblom@tapir.caltech.edu,
lukas.heinrich@cern.ch, awsteinerQutk.edu, fweber@sciences.sdsu.edu,
daniel@uci.edu

ABSTRACT: Neutron stars provide a unique opportunity to study strongly interacting matter
under extreme density conditions. The intricacies of matter inside neutron stars and their
equation of state are not directly visible, but determine bulk properties, such as mass and
radius, which affect the star’s thermal X-ray emissions. However, the telescope spectra of
these emissions are also affected by the stellar distance, hydrogen column, and effective
surface temperature, which are not always well-constrained. Uncertainties on these nuisance
parameters must be accounted for when making a robust estimation of the equation of state.
In this study, we develop a novel methodology that, for the first time, can infer the full
posterior distribution of both the equation of state and nuisance parameters directly from

© 2024 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
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(Frequentist) Hypothesis tests

Z(H, | data) Z(H,,r| data)
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(Frequentist) Hypothesis tests

Z(H,|data) = p(data| H,)
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) A measurement of the Higgs width

6peak:

“Width” of the particle

Undiscovered massive particles
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&) A measurement of the Higgs width

 Enables the probe of a wide variety of new massive
particles, other new physics & peak

* (Central topic for future colliders

“Width” of the particle

Undiscovered massive particles
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Count

New challenge: Quantum interference

Non-linear changes in kinematics

Background-only model

Signal model

Data can no longer be summarised in 1D histogram (see Ghosh et al: hal-02971995(p172)) !
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New challenge: Quantum interference
Non-linear changes in kinematics

Background-only model

do/dmy[fb/GeV]

Count

Signal model

§ Kf kv Z J - Z
Quantum interference: z?}/\/\';,;"'\i y |
8 Z § QOO z

Data can no longer be summarised in 1D histogram (see Ghosh et al: hal-02971995(p172)) !
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Campbell et al: arXiv:1311.3589
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The problem with one-dimensional summaries...
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Theory 1

The problem with one-dimensional summaries...
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Theory 2
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Count

Theory 1

1-D projection

The problem with one-dimensional summaries...

Theory 2
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1-D projection

The problem with one-dimensional summaries...
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The problem with one-dimensional summaries...

Theory 3

Theory 4

Theory 2

Theory 1

Count

1-D projection

2-D space
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The problem with one-dimensional summaries...

Theory 3

Theory 4 ‘

Theory 1

Theory 2

Count

1-D projection

e Clearly separable in 2-D

* No 1-

D summary statistic may contain a

information needed to optimally test all t
nypotheses!

. ’ = Lo ’ <3 ] S Sl ” — S s e Ol ’ — Lo Ty e — o g Lo row ’ ” — il S G ’ — A g O ’ = P ’ <3 row \ s
Y
P~

| the

neory

* Valuable to have high-dimensional view of

data



hal-02971995v3 (p172): Aishik Ghosh, David Rousseau

No single observable captures all information in Higgs width study

~ Signal-background-inference simulations: MG + Pythia
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hal-02971995v3 (p172): Aishik Ghosh, David Rousseau

No single observable captures all information in Higgs width study

~ Signal-background-inference simulations: MG + Pythia
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hal-02971995v3 (p172): Aishik Ghosh, David Rousseau

No single observable captures all information in Higgs width study

~ Signal-background-inference simulations: MG + Pythia____
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Optimal observable now changes as a function of g: Cannot collapse problem to 1 dimension
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But probability density estimation in higher dimensions is hard...

> How many events to populate
2-D histogram with 62 bins ?

Count

1-D histogram with 6 bins: few
events enough to populate it

How many events for 50-D histogram
with 6°° bins ?
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But probability density estimation in higher dimensions is hard...

> How many events to populate
2-D histogram with 62 bins ?

Count

1-D histogram with 6 bins: few

events enough to populate it CUTS@ Of dlmensmnahty

How many events for 50-D histogram
with 6°° bins ?
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High-dim data

High-dim data

Cranmer et al: arXiv:1506.02169

Neural networks can scale to higher dimensions

Summarisation
to histogram

Neural simulation-based inference framework:

Data / Exp.

Traditional framework:

300 400 500 600 700 800 900 1000
m,, [GeV]

Summary
Histogram Statistical » Likelihood
1

U is now arbitrary parameter of interest(s)

Obs Data ——

Hq

Likelihood Ratio

Neural Network

> ( CAVRED )
Z(ref | D)
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High-dim data

High-dim data
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Neural networks can scale to higher dimensions

Summarisatz
to histog

High-dim data

Traditional framework:

Cranmer et al: arXiv:1506.02169

7| Systematic uncertainties

Summary
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Histogram
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Neural simulation-based inference framework:
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High-dim data
Hypothesis i,

rain on simulations, apply on data

ngotlaesis /L, M IS now arbitrary parameter of interest(s)
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NSBI for Higgs width in proof-of-concept phenomenology study

Beyond Standard Model value) -
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NSBI for Higgs width in proof-of-concept phenomenology study

ol ° Histogram my, Vs =13 Tev, 36 fo~!
0 Histogram ML
e Proposed method
6% .51« Histogram ptj
Histogram An;;
B0 J/
O 1.0 -
m—
|
).5 - Narrower is better
0.04 g
0 2 4 6 8 10 12 14 16

Beyond Standard Model value) (4 = 4, without rate
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NSBI for Higgs width in proof-of-concept phenomenology study

2.0 -
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Expected improvement for Standard Model

3.5 - :
Histogram my; Vs =13 Tev, 36!
3.0 - Histogram ML
> 5 - Proposed method
Histogram ptj;
2.0 - :
Histogram An;
1.5 -
(mprovement _
1.0 - -
0.5 -
0.0 -
2 4 6 é 10 12 1|4 1|6
U

SM, without rate

Exciting gains promised!

 hal02971995v3: Aishik Ghosh, David Rousseau
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Open problems to extend to full ATLAS analysis:

 Robustness: Design and validation
o Systematic Uncertainties: Incorporate them in likelihood (ratio) model

 Neyman Construction: Throwing toys in a per-event analysis

19



ATLAS CONF Note
ATLAS ATLAS-CONF-2024-015 ~7

EXPERIMENT
28th October 2024

An implementation of Neural Simulation-Based
Inference for Parameter Estimation in ATLAS

The ATLAS Collaboration
Solved!

Neural Simulation-Based Inference (NSBI) is a powerful class of machine learning (ML)-based

methods for statistical inference that naturally handles high-dimensional parameter estimation

without the need to bin data into low-dimensional summary histograms. Such methods are

. promising for a range of measurements, including at the Large Hadron Collider (LHC), where

O n r b I m t 't n d 't f I I AT L A S n I - no single observable may be optimal to scan over the entire theoretical phase space under

p e p O e S O eX e O u a a yS I S n consideration, or where binning data into histograms could result in a loss of sensitivity.

This work develops an NSBI framework for statistical inference, using neural networks to

estimate probability density ratios, which enables the application of NSBI to a full-scale LHC

analysis. It incorporates a large number of systematic uncertainties, quantifies the uncertainty

coming from finite training statistics, develops a method to construct confidence intervals,

and demonstrates a series of intermediate diagnostic checks that can be performed to validate

the robustness of the method. As an example, the power and feasibility of the method are

demonstrated on simulated data for a simplified version of an off-shell Higgs boson couplings

measurement in the four-leptons final states. This NSBI framework is an extension of the

standard statistical framework used by LHC experiments and can benefit a large number of
physics analyses.

ATLAS-CONF-2024-015

@ 28 October 2024

© 2024 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

Presented at CHEP 2024, Higgs 2024



https://indico.cern.ch/event/1338689/contributions/6015960/
https://indico.cern.ch/event/1391236/

@ ATLAS CONF Note y

ATLAS ATLAS-CONF-2024-015 7

EXPERIMENT
28th October 2024

An implementation of Neural Simulation-Based
Inference for Parameter Estimation in ATLAS

Solved! ATLAS CONF Note

ATLAS ATLAS-CONF-2024-016 ~7

EXPERIMENT
October 31, 2024

Open problems to extend to full ATLAS analysis:

Measurement of off-shell Higgs boson production in
the H* —» ZZ — 4¢ decay channel using a neural

simulation-based inference technique with the
ATLAS detector at s = 13 TeV

The ATLAS Collaboration

A measurement of off-shell Higgs boson production in the H* — ZZ — 4¢ decay channel

’ ’ 4
Appued o Runz olata, qu:ersed Lng Pre\/bovcs
is presented. The measurement uses the 140 fb~! of integrated luminosity collected by the
A ' LA S a e Y 0 lAI S a VM/ 8 d a t a ' ATLAS detector during the Run 2 proton-proton collisions of the Large Hadron Collider at
® /s = 13 TeV and supersedes our previous result in this decay channel using the same dataset.

The data analysis is performed using a neural simulation based-inference method, which builds
per-event likelihood ratios using neural networks. The observed (expected) off-shell Higgs
boson production signal strength in the ZZ — 4¢ decay channel is 0.87J:(2)"752-l (1.00%‘%@) at
68% CL. The previous result was not able to achieve expected sensitivity to quote a two-sided
interval at this CL. The expected plus-side uncertainty is reduced by 10%. The evidence for
off-shell Higgs boson production has an observed (expected) significance of 2.50 (1.307) using
the ZZ — 4¢ decay channel only. The expected significance score is 2.6 times that of our
previous result using the same dataset. When combined with our most recent measurement in
Z7Z — 2{2v decay channel, the evidence for off-shell Higgs boson production has an observed
(expected) significance of 3.70 (2.40°). The off-shell measurements are combined with the
measurement of on-shell Higgs boson production to obtain constraints on the Higgs boson
total width. The observed (expected) value of the Higgs boson width is 4.3t21"79 4. lt%'. 1) MeV
at 68% CL.

© 2024 CERN for the benefit of the ATLAS Collaboration.

P r e S e n .t e d at C |_| E P 20 2 4 | I_l | g g S 20 2 4 Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
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ATLAS methods note: CDS

Big picture of full solution developed in ATLAS

Obs Data Likelihood Ratio

(Hm VS H,,ef)

H A 4 Networks

0(16) observables
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ATLAS methods note: CDS

Big picture of full solution developed in ATLAS

Likelihood Ratio
(H VS Href)

Obs Data ——
Core
H A 4 Networks /

Syst_0 Syst_1 Syst_N Networks adjust likelihood for
Network Network Network each systematic uncertainty
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Ensemble; Statistical

ATLAS methods note: CDS

Big picture of full solution developed in ATLAS

Obs Data ——

Likelihood Ratio

uncertainty on density =
ratios

H;l 4 Networks

/

(Hm VS Href)

Syst_0 Syst_1
Network Network

/

Syst_N Networks adjust likelihood for
Network each systematic uncertainty
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ATLAS methods note: CDS

Big picture of full solution developed in ATLAS

Obs Data —— : : :
Ensemble; Statistical Core , _ Likelihood Ratio
uncertainty on density = H, 8 Networks (H,, Vs H, )
ratios //
/
Syst_0 Syst_1 Syst_N Networks adjust likelihood for
Network Network Network each systematic uncertainty

y /
+ Train O(10%) networks on TensorFlow "““Q
+ Computing resources provided by Google, SMU, other HPC clusters r A

+ Fits with JAX (’(‘é"‘“{“ )
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Open problems to extend to full ATLAS analysis:
 Robustness: Design and validation

o Systematic Uncertainties: Incorporate them in likelihood (ratio) model

 Neyman Construction: Throwing toys in a per-event analysis

Next 2 slides gets a bit technical
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ATLAS methods note: CDS

Search-Oriented Mixture Model

X; is one individual event General Formula

1 C
p(xilp) = () ;fj(/«‘) v pj(x;)

J runs over different physics process
(Eg. gg —» H* - 41, 99 > Z7Z — 4])

Example use case
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ATLAS methods note: CDS

Search-Oriented Mixture Model

X; is one individual event General Formula

1 C
p(xilp) = () ;fj(/«l) v pj(x;)

J runs over different physics process
(Eg. gg —» H* — 41, gg —» 77 — 4l)

Example use case

: (1 — V) vs ps(x) + Vi vser, pser, (x) + (1 — V) ve pe(x) |

VooF (ﬂ)

P ggF (x‘ﬂ) —
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ATLAS methods note: CDS

Search-Oriented Mixture Model

X; is one individual event General Formula

1 ¢
p(xi|lp) =
v(p) ZJ: y

J runs over different physics process
(Eg. gg —» H* - 41, 99 > Z7Z — 4])

Comes from theory model chosen to interpret data

Example use case

N Fl(,u) [w) Vs ps(x) +m\/EVSBII pser (x) + (1 —+/u)vs pB (x)]
o0 LN L VH

P ggF (x‘ﬂ) —
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ATLAS methods note: CDS

Search-Oriented Mixture Model

X; is one individual event General Formula
C

p(xilu) = mya ‘ (V) Pj(xi)

N <
N 2

J runs over different physics process
Fa. — H* = 4] — /7 — 4]
Event rates estimabted from simulabions ™ (-9- 88 58 )

Comes ffm-m Ekeorj modet chasem %c::v m&erpre& d&%a

Example use case

gk (x110) = Fl( <[4 VR vs () + VB vsan, psan, () + (1= yEVB pu (o)
™ ;
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ATLAS methods note: CDS

Search-Oriented Mixture Model

X; is one individual event General Formula

J— ?
—
°
N
|\

p(xilp) = 7 )Z ( u) |

J runs over different physics process

I Foveies Poeeey,
Event rates estimabted from simulabions ™ (9. 88 56 )

Comes {rom Ekeorv modei chosem %c::v m&aryre& d&%a

Example use case

: [(,U Vi) Vs ps(X) + Vi VsB, pSBll(x)+(1_\/_)VBPB(x)]

ggF( )

P ggF (x‘:u) —
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ATLAS methods note: CDS

Search-Oriented Mixture Model

X; is one individual event General Formula

p(xilu) = ~ (u) (%, plalw) _ 1 0, piG)
) Z - TN Pret(x;)  v(u) Zf] (1) £ Pref(x;)

o

f&eﬂfer@.s«@e kvpoﬁhesus J runs over different physics process
(Eg. 88 — H* — 4l gg = 22— 4l)

Efvev\% rates estimated from simulations
Comes {rom Ekeorv modei chosem %c::v m&aryre& d&%a

Example use case

: [(,U Vi) Vs ps(X) + Vi VsB, pSBll(x)+(1_\/_)VBPB(x)]

ggF( )

P ggF (x‘:u) —
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ATLAS methods note: CDS

Search-Oriented Mixture Model

X; is one individual event General Formula
C
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//];ref(xi) - v(u) Zf] (1) ! Pref(X;)

f&@ferevxte kvpo-%hesus J runs over different physics process
(Eg. gg —» H* - 41, 99 > Z7Z — 4])

E;'vev\% rates estimated from simulations >
Comes ffm-m Eheorj moc{et tkosem Ec::v m&erpre& c&o&&

Example use case

: [(,U Vi) Vs ps(X) + Vi VsB, pSBll(x)+(1_\/_)VBPB(x)]

ggF( )

>

P ggF (x‘ﬂ) —
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ATLAS methods note: CDS

Search-Oriented Mixture Model

X; is one individual event General Formula
C Estimated using an amsambte oﬂf me_%warws
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pref(xi)
A

f%’;eﬂf@.r@.mae k:jpo%h@.sus J runs over different physics prOCGS
(Eg. 8¢ = H* — 4l, gg = 22 — 4l)

Efvev\% rates estimated from simulations
Comes ffm-m Ekeorj modet &kosem %c::r m%erpre& d&%a

Example use case

: [(,U Vi) Vs ps(X) + Vi VsB, pSBll(x)+(1_\/_)VBPB(x)]

ggF( )

>

P ggF (x‘:u) —

plxlp) 1 . e PsBIL (x)
ps(r) v |17 VIS VR YsEL TS

oy PO
(L= Vi)ve ps(x)
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Hﬂ

Hypothesis |

VS

H,.of

re

Reference
hypothesis

Robust, parameterised classifier without parameterising

H, .. Reference hypothesis

p(xilp) 1 chf-( "
Pret(xi)  v(p) &4 SO

A separate classifier per physics process |
(Eg. gg —» H* - 4l gg —> ZZ — 4l)

pj(x;)
pref(xi)
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Robust, parameterised classifier without parameterising
H, .. Reference hypothesis

Hﬂ

Hypothesis |

VS

H,.of

re

Reference
hypothesis

pxilw) 1 < oo i)
Pref(X;) - v(u) ;f] (1) g Pref(X;)

A separate classifier per physics process |
(Eg. gg —» H* - 4l gg — Z7Z — 4l 24




Robust, parameterised classifier without parameterising
H, .. Reference hypothesis

Hﬂ

Hypothesis |

VS

H,.of

re

p(xilw) 1 - pj(x;)
Pret(xi) — v(n) 211w vy

A separate classifier per physics process |
(Eg. gg —» H* - 4l gg — Z7Z — 4l 24

Reference
hypothesis




Robust, parameterised classifier without parameterising
H, .. Reference hypothesis

$ QRO z
‘fo(/,t) — g \QQQ' _ A )
Hﬂ
Hypothesis '. fl(//t) — g ﬁif{ z
. -
8 Z
VS Qoo L .
hw) =/u O T
| C
Href | p(‘xl‘ﬂ) 1 f(,ll) CY p] (Xi)
1!(”) Z ;. J J
g Analytically parameterised in u, allows to get LR Dref (x_,; ) I Pref (xi )
for any hypothesis u without training —

A separate classifier per physics process |

parameterised networks | (Eg. g¢ — H* — 4l gg — ZZ — 4l) y



Robust, parameterised classifier without parameterising
H, .. Reference hypothesis

" (1) will depend on morphing bases ponts (which values
of i were used to simulate samples)

¢ QO Z
.f()(//t): Y A
g QQQ—> Z
Hﬂ

Hypothesis |

Jilp) = :m,;;f(i

VS Qa7 .
hw) =/u O T
| C
Href | p(‘xl‘ﬂ) 1 f( ) CY p] (Xi)
) Analytically parameterised in u, allows to get LR ref \Ai, F ref\Aj
for any hypothesis u without training —

A separate classifier per physics process |

parameterised networks | (Eg. g¢ — H* — 4l gg — ZZ — 4l) y



Open problems to extend to full ATLAS analysis:

 Robustness: Design and validation

o Systematic Uncertainties: Incorporate them in likelihood (ratio) model

 Neyman Construction: Throwing toys in a per-event analysis
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Validate quality of LR estimation with re-weighting task

Reweighting: Calculate weights w; for events Xx; in blue sample to match green sample

20



Validate quality of LR estimation with re-weighting task

Reweighting: Calculate weights w; for events Xx; in blue sample to match green sample

px; | o)

w; = 1r(x;, Uy, H1) =
a DT p )

Already estimated using an ensemble of networks
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| T T

Re-weight closures

source
Variab 4 i ;@rvget High-level variable
ariaple used in trainin - .

J never used in training
.................................... 0 103,.,....,....,....,....,....,...........
| ATLAS Simulation Preliminary _ g ATLAS Simulation Preliminary

-4-- SBI; Original I'Jé 101 = -4-- SBI, Original _
B ~+f+ 8 Original B N |-+ S Original
..... —+— S — SBIly Reweighted c_és —— S — SBI; Reweighted
§10—1 T M ..... T 1_|_| |
Loal )
_: 15:_ I B o L e e e L e A A ._:
) 2 -
. O B ]
1 210 S
E = | -
_ o - |
0.5 -
500 1000 1500 — 20 25 30 35

my, [GeV]

My,

Matrix-Element-based Observable

-log(MCFM ME HZzZ)

(ggF from MCFM)

ATLAS methods note: CDS

High-Dim Classifier Test:

Train independent classifier on RW vs Target,

AUC=0.5 = LRs well estimated
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2024-015/

Binned estimate

MC estimate log [p(u = 0.3)/pref]

Pull

2.5

ATLAS Higgs width physics analysis note: CDS

Calibration curves of probability density ratios

Pu=0.3(X;)

P ref (xi)

| I I I
oo (o)} ~ N o N ~
| 1 =T 1 T 1 T 1 T 1 1

- ATLAS Simulation Preliminary
s=13TeV

O_Olll.n

NN predicted log[p(u = 0.3)/pre]

Ensemble prediction

MC estimate log [p(u =1.7)/Prei]

Pull

2.5

2.5

Pu=1.7X;)
Pref (xi)

| I I I
0o o ~ N o )\ H
1 | FT T T 1 T 1 T 1 1

- ATLAS Simulation Preliminary
— V/5=13TeV WE

||||||||||||||||||||||
=l

0.0

o nd et heught gt ot ot A
ikl

NN predicted log[p(u =1.7)/Prei]

Ensemble prediction
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2024-016/

‘I

Testing full analysis on samples from different values of u

2.5—m™m™m™mm—m————————

ATLAS Simulation Preliminary
Vs =13TeV .

2.0

1.5

|IIII|IIII|IIII
L

1.0

Maximum Likelihood Estimator yg - shel

T T 1
o

111111111111111111111111
........................

[]
0.2

0.0

O
.
O
——
—.—
.-
o
ot
Lo b b

Difference

0.0 0.5 1.0 1.5 2.0 2.5
Asimov dataset true Ui _ shell

-0.2

No bias: Method recovers correct value of y on
average

(Correct value when tested on the median
'‘Asimov dataset’)

And many more diagnostics (see backup)
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» Systematic Uncertainties: Incorporate them in likelihood (ratio) model

30



Number of Events

20000 -

Experimental uncertainties:
Eg. Inaccuracies in the calibration of our detector

1 2=0.9

30000 - z=1.0
o z=11

B I R o T

100001 .. LL tt, W + jets
"'._, HiggsML Dataset

01— - e '
0 50 100 150 200 250

m,lfp MET (GeV)

Image: arXiv:2105.08742

Systematic uncertainties

Theory uncertainties:

Eg. Inability to compute QFT to infinite order

s
wn®
Y
P 3Ae
.
.
o
.
.
.
.
.
o
.

Sherpa

Next year’s
generator

Image: arXiv:2109.08159

Estimated Uncertainty

el N | 4

rns

SHERPA 2.2
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https://arxiv.org/abs/2109.08159
https://arxiv.org/abs/2105.08742

Systematic uncertainties

» We only have simulations at 3 variations of each nuisance parameter a;,

31


https://arxiv.org/abs/2109.08159
https://arxiv.org/abs/2105.08742

Known interpolation strategies

See formula used in backup

Image: arXiv:1503.07622

A2.4 __I' 1 | L | L | L | L | L | L | 1 ‘I__
32_2 - piecewise linear
A - - piecewise exponential -
2% 20 quadratic-interp, linear extrap 7
18 - poly-interp, expo extrap -
@B - 65_ /
< & = @ > 12— . E
“ 1 ;
. 0.8 =
0.6 =
0.41 -
' 0.2F =
O : | I I | | I I | L1 1 1 | L1 1 1 | | I I | | I I | L1 1 1 | L1 1 1 :
2 15 -1 05 0 05 1 15 2
o

= Combine these traditional interpolation with neural network estimation of per-event likelihood ratios
32


https://arxiv.org/abs/1503.07622

Probability density ratio including nuisance parameters ()
p(xi ‘ /’taﬂ) o
pref(xi)

See details of vertical interpolation for Gi(ay), 8/(x;, o) v

X; Is one individual event
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Probability density ratio including nuisance parameters ()

X; Is one individual event

1 C ( syst

P\
;f,(m K 1;[G<ak> g:(x;, )

p(xi ‘/’taﬂ) _
P ref(-xi) L (//ta Ot’)

See details of vertical interpolation for Gi(ay), 8/(x;, o) v
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Probability density ratio including nuisance parameters ()

pxilp.a) 1
P ref(-xi) U (//ta Ot’)

See details of vertical interpolation for Gi(ay), 8/(x;, o) v

X; Is one individual event | :
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Probability density ratio including nuisance parameters ()

px;|p. )

Estinmate from simulations and existing ———1———
interpolation mebhods :

See details of vertical interpolation for Gi(ay), 8/(x;, o) v

X; Is one individual event | :
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Probability density ratio including nuisance parameters ()

X; Is one individual event | -

px; | pu, a) _
Pref (x;)

We have bhis already

APer-event terms estimaked using ancther
ensemble of networks and interpolation
methods

pj(xia )

% g](xl’ ak) e
! pj(xi)

Estimate from simulations and existing ———1——

interpolation mebhods :

See details of vertical interpolation for Gj(ak), gj(xi, a,) v 33



L (u, a|D)

Lref(@)

Final test statistic

N, data

= Pois(Ngata|v (1, @)) 1_[

p(xi|u,

pref(xi

2) 1_[ Gaus(ag|ak, 0k)
k

X; Is one individual event
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X; Is one individual event ;

L (u, a|D)

Lref(D)

Final test statistic

/
f

, P \Ai
= POIS(Ndata‘V(,ua a/)) ‘ ‘ |
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L (u, a|D)

Lref(D)

Final test statistic

X; Is one individual event g

Prod over evewnks

34



Final test statistic

x; is one individual event — F ' '

L (u, a|D)

Lref(D)

f?;o&é Eerm

Prod over evewnks
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Final test statistic

x; is one individual event L F ' '

L (u, a|D)

Lref(D)

Qa&é Eerm

Prod over evewnks

Cownskrain Ferm
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Final test statistic

X is one individual event & ' '

L (u, a|D)

Lref(@)

Profiling: t, = —2In

This is kj we define p, to be independent of

ATLAS Simulation Preliminary

------- Unbinned NSBI Stat+Syst

—— Unbinned NSBI Stat Only

-——- Binned log [ps/ p(1.0)] Stat Only
- Binned log [ps / p(1.0)] Stat+Syst

o
...
L]
L]
L]
L4
.O
L)

e

LA 1
L]




Final test statistic

x; is one individual event - '
Liun(u, D) |

Lref(D)

~ ~8F T T T T ;o
-~ = + ATLASSimulat imi ¥
- | L ) ln qull (Iu, &)//Mef I S Simulation Preliminary /!
FOTHINg. po L (A A) //L/ 6_ ------- Unbinned NSBI Stat+Syst
full ref ~ —— Unbinned NSBI Stat Only
| —--- Binned log [ps/ p(1.0)] Stat Only
i - Binned log [ps / p(1.0)] Stat+Syst
41—

This is kj we define p, to be independent of

Non-parabolic shape due to non-linear etfects from quantum interference




Reference Sample

A combination of signal samples, to ensure there’s non-vanishing support entire region of analysis
Does not have to be physical!

Csi nals
1 g
x. — V ° x-
pref( z) Zk Ve Ek’ k pk( z)

= |n our dataset, p,,ef( - ) = pg( +)

Choice of p,,ef( - ) can be made purely on numerical stability of training, as it drops out in profile step

t, =

oln (quu(u, a)/ch/ei-)

qull(//za a)/ ref
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Open problems to extend to full ATLAS analysis:

v Robustness: Design and validation
v Systematic Uncertainties: Incorporate them in likelihood (ratio) model

» Neyman Construction: Throwing toys in a per-event analysis

30



Throwing event-level toys

Traditionally: NSBI:
v 1 N=10000
0.30 - —
0.25 - Poisson per event
e Poisson per bin
0.15 -
0.05 - |
0.00 —F——14 , =
-3 -2 -1 0 1 2 3
Asimov Histogram
. toy - Asimov
oy __ - Asimov 7 = Poisson(w:
N * = Poisson(N: ) v sson(w; )

(‘Unweighted’ events, i.e. integer weights)

What if events have negative weights? See backup 37



Confidence belts

ATLAS Simulation Preliminary

—— Unbinned NSBI
---- Binned log [ps/ p(u =1.0)]

Similar to structure seen in histogram analysis
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Why does NSBI work better than traditional analyses?

39



S8

Why does it work better than traditional analyses?

T ()
o Ofixeq = log ISt > Similar to histogram analysis
—

114/ pSB|(xz)

- ATLAS Simulation Preliminary

6  — Unbinned NSBI
-==Binned log [ps/p(u =1.0)] 15 bins
+ Binned p(u = Ugcan)/p(u =1.0) 16 bins
Binned p(u = Uscan)/p( = 1.0) 21 bins
4 B Binned p(u = Uscan)/p( = 1.0) 31 bins
( )/p( )

/p
Binned p(u = Uscan)/p( = 1.0) 91 bins

i NSBIl: Parameterised, unbinned




Why does it work better than traditional analyses?

S pst) .
- ATLAS Simulation Preliminary ! 1 Ofixeqg = log . Similar to histogram analysis
i o —T PsBI(x)
B 4 i
6_ —  Unbinned NSBI £ _ ( ‘ )
——— Binned | / p( =1.0)] 15 bi ! P [ H . . -
: + Bmid ;())(i [f,lSJSCZ)()I/Jp(p=?I]_O) 1én;ns /I :/OM — : T . Parameterised observable, histogram fit
i Binned p(u = Ugcan)/p(u = 1.0) 21 bins A ] p(xi‘//t _ )
Binned p(u = Uscan)/p( = 1.0) 31 bins /
4 e Binned p(u = pscan)/p(k = 1.0) 91 bins _/ |
’é i
| 4 _ NSBI: Parameterised, unbinned
2 /// |
° _ // _|
w T —=-3 )
x I I ] \\ ] ] I ] I I I ] I I
0.0\ 0.5 1.0 1.5 2.0 2.5
u

Significant improvement in QI impacted region



Why does it work better than traditional analyses?

S N A pst) .
- ATLAS Simulation Preliminary ! 1 Ofixeqg = log . Similar to histogram analysis
i o —T psBI(x;)
i 4 _
6  — Unbinned NSBI £ _
. _—_ Binnedlog [ps/ p(u =1.0)] 15 bins fr ] p(x: | 1) | | |
i + Binned p(u = Uscan)/p( = 1.0) 16 bins /1 _/OM — . Parameterised observable, histogram fit
i Binned p(U = Usean)/p(1 = 1.0) 21 bins A - p(xi‘//t = 1)
Binned p(u = Uscan)/p( = 1.0) 31 bins fl
4 e Binned p(u = Uscan)/P(p =1.0) 91 bins _/ |
/ _
s - . .
| 4 _ NSBI: Parameterised, unbinned
2 \ /// _
¢ __ // _
M _To===3 S 1T~ O, approaches NSBI as nBins — oo
x I I ] \\ | ] I ] I I I ] I I I
0.0\ 0.5 1.0 1.5 2.0 2.5
u

Significant improvement in QI impacted region



Results on data

NSBI vs histogram analysis Stat vs Stat+Syst
Nl _'"'|""|""|""|""|""_ _Hl _""|'"'|""|""|""|""_
- ATLAS Preliminary - - ATLAS Preliminary .
12 Vs=13Tev,140f0"  — ObsNSBI ~ 12 Vs=13Tev, 140" — ObsNSBI Ea
N --— Exp NSBI | § --— Exp NSBI o
10— — .= Obs Histogram | 10— e Obs NSBI stat-only + _
i 4¢only -~ =+ Exp Histogram | _ dconly L Exp NSBI stat-only::’ |
8 y 8| ’ y
6
7y O SRR e
X
20N e e
i\\...: e e LIS e S :.
0.0 05 1.0 15 20 25 30
M oftshell M oftshell
Observed data happens to provide stronger than Nuisance parameters decrease sensitivity, as expected

expected constrains for both hist and NSBI (consistent) i



ToonClips.com

#56684

service@toonclips.com
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Image: Source
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Mass (Mgyn)

Telescope measurements of energy spectra of neutron stars

- Mass-radius curves created by different equation of state
1 (EoS) models

|

MPA1

AP PAL1

> AP4 ENG MS2 MSO —
= = n | Horizontal bars show massive neutron star observations used
STl || - —— S ' to “rule out” EoS models.
PAL6 PCL2 A \\
GS1 4 GM2 G52
CM3
S~
s~ SM2 Two communities:
e Astrophysicists measure mass/radius from telescope
SQM3 . .

* Nuclear theorists measure EoS from mass/radius

ISI.KI';llllllollll1111111112|lll113llllll4ll|1115111116

Radius (km)

Figure from Lattimer J. M., Prakash M., 2001, The Astrophysical Journal, 550, 426—442
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Telescope measurements of energy spectra

Probe the interior:

Equation of State parameters Distance

Mass Hydrogen Column

ﬂ ﬂ | —— M=1.05M _
1 ° 2 0.00025 M— 115 MSU” 0.00025 - —— Ny = 1.28 x10%2Y/cm? 0.00025 —— dist = 5.0 kpc
D Ny = 1.58 x102/cm? — dist = 6.5 kpc
0.00020 1 wmom M= 125 Mo, N, = 1.68 x102}/cm? —— dist = 7.0 kpc
— M=1.35M,, 0.00020 = 0.000207 = dist = 7.5 kpc
» —=—- Ny = 1.78 x10%Y/cm? " 2 XP
§ - g 0.00015 1 — Ny =138 x1021/cm2 § 0.00015 1 dist = 8.5 kpc
o 0.00010- & 0.000101 Ny = 2.28 x10%'/cm? o 0.00010-
0.00005 - 0.00005 - 0.00005 -
0.00000 0.00000 ' 0.00000 1 2 3
1 2 3
' Energy [keV] Energy [keV]
. 0.00025 —— R=14.5km 0.00025 1 — :Zggeff; = 2-;2
—— R=13.5km — eff) = 6.
0.000201 ---- R=12.5 km 0.00020 - ---- log(Tes) = 6.15
' —— R=11.5km " —— 1og(Ter) = 6.10
(V)]
~ —— R=10.5 km a | log(Tesr) = 6.05
“ 0.00015- ¢ 0-00015
3 3
2 £ 0.00010-
 0.00010-
0.00005 -
0.00005 -
0.00000 - -
— 0.00000 1 2 3

Energy [keV]

Energy [keV]

Radius Effective Temperature
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Traditional method: Two-step inference

*—~

) )
, : ~r _Energy _Radius B lEnefgy Density
Neutron star in sky Astrophysicists Nuclear theorists

JCAP.020P.0922: Delaney Farrell, Pierre Baldi, Jordan Ott, Aishik Ghosh, Andrew W. Steiner, Atharva Kavitkar, Lee Lindblom, Daniel Whiteson, Fridolin Weber
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https://arxiv.org/abs/2209.02817

Traditional method: Two-step inference

*—~

) )
, : ~r _Energy _Radius B lEnefgy Density
Neutron star in sky Astrophysicists Nuclear theorists

| eak some information on uncertainties in the handover

JCAP.020P.0922: Delaney Farrell, Pierre Baldi, Jordan Ott, Aishik Ghosh, Andrew W. Steiner, Atharva Kavitkar, Lee Lindblom, Daniel Whiteson, Fridolin Weber
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https://arxiv.org/abs/2209.02817

Neutron star in s

NPS

Photons / s

Traditional method: Two-step inference

Mass

*—~

Pressure

-

— | . . ;
- _Energy _Radius B Energy Density
Astrophysicists Nuclear theorists

| eak some information on uncertainties in the handover

JCAP.020P.0922: Delaney Farrell, Pierre Baldi, Jordan Ott, Aishik Ghosh, Andrew W. Steiner, Atharva Kavitkar, Lee Lindblom, Daniel Whiteson, Fridolin Weber
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https://arxiv.org/abs/2209.02817

Traditional method: Two-step inference

SOTA collapsed information into 2 numbers + assumed uncorrelated Gaussian

uncertainties

Real uncertainties look quite different

Neutron star in s

NPS

Photons / s

Pressure

-

_Radius lEnefgy Density

Astrophysicists Nuclear theorists

| eak some information on uncertainties in the handover

20.0
---- Simple Uncert.
17.5 e NP Variations ‘
— 15.0 e Mean ® o
ol
————————————————— o
///// .’\\
® \
e 0L )
OO ! T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Predicted mass [Mq,n]
—1.80
e NP Variation
—1.851 e Mean
~ _
- —1.90
)
O
5 —1.951 o
2 -
O _2.00- oo
O
—2.05- ° .
4.6 4.8 5.0 5.2 5.4
Predicted A,
47

JCAP.020P.0922: Delaney Farrell, Pierre Baldi, Jordan Ott, Aishik Ghosh, Andrew W. Steiner, Atharva Kavitkar, Lee Lindblom, Daniel Whiteson, Fridolin Weber



https://arxiv.org/abs/2209.02817

Inferring neutron star EoS parameters with NSBI
Recover the likelihood of EoS + NPs directly from the raw high-dimensional telescope spectra!

Astrophysicists Nuclear physicists

Z L
2 = 52 :
o o -
~ ~150
' '. . “e 4 ) N 5.0 —225 5
- e ' . v ~ S
h ¥ S EAN ~300 7
~ , AW : 4.9-
, . WA o ~375
| e g el 4.8 ~450
o . ' : o D0 N I I T T . . ) - : - : - :
. | . | 1 & \/ \/ Energy Den81ty > - /\]1“95 -
Neutron star in sky

Nuisance parameters

Direct estimation of likelihood from high-dimensional raw data allows
more reliable uncertainty propagation and better measurements!

CAP09(2024)009: Brandes, Modi, Ghosh, et al JCAP12(2023)022: Farrell, Baldi, Ott, Ghosh, et al JCAPO2(2023)016: Farrell, Baldi, Ott, Ghosh, et al 48



https://iopscience.iop.org/article/10.1088/1475-7516/2024/09/009
https://iopscience.iop.org/article/10.1088/1475-7516/2023/02/016
https://iopscience.iop.org/article/10.1088/1475-7516/2023/12/022

Meaningful posteriors, most sensitive method !

Bayesian Posteriors and credible intervals

0

e [MeV fm ]

55% | | I | I 95I% | |
| 68% 2.0T 68% -
= median - = median
—2.0l :
®
=
= 1.oF -
1.0¢ -
200 400 600 800 1000 10 14
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Enhanced Interpretability: Effect of nuisance parameters

loose Prior knowledge on nuisance parameters
tight

true

Only possible to visualise these due to the fast and differentiable

likelihood from networks

600 625 650
1Og(Teﬁ“)(1)
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Conclusion

 Quantum interference breaks assumptions in traditional statistical methods
at LHC

 Neural inference can optimally handle these challenges tor Higgs width:
 Shown in phenomenology study
 Developed method for deployment in ATLAS

* Re-analysed Run 2 data and achieved a dramatic improvement in
sensitivity (H — 41)

 NSBI has wide-ranging applications, in particle physics, astrophysics and
beyond!

 Weaknesses: Same as traditional analyses (systematics, training statistics).

Developed diagnostic tools to help

Obs Data —— Likelihood Ratio

< Z(py | D) )
ZL(ref | D)

Hy >
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Thanks !

Reach out; Emall

52


http://aishikghoshoffice@gmail.com

gg Background

Non-linear problem

RS waa

This term is negative

ggF Signal

Scale by signal strength p:
M(X)|* = [/ My(X)],

Pscaled(X) :/L'PS(X) _|_Pb(X) _|_\/EPZ(X)
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https://hal.science/hal-02971995v3/

Choice of observable
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Choice of observable

Neyman-Pearson lemma: Likelihood ratio is the most powerful test statistic

p(< | u)
p(D | 1)

We want to compare likelihoods:
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Choice of observable

Neyman-Pearson lemma: Likelihood ratio is the most powerful test statistic

p(D | )
P(D | o)

We want to compare likelihoods:
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Choice of observable

Neyman-Pearson lemma: Likelihood ratio is the most powerful test statistic

p(D | )
P(D | o)

We want to compare likelihoods:

p(xl- |.S)
px;|S) + p(x;| B)

A neural network classifier trained on S vs B, estimates the decision function™: S(xl-) =

* Equal class weights 54



Choice of observable

Neyman-Pearson lemma: Likelihood ratio is the most powerful test statistic

p(D | )
P(D | o)

We want to compare likelihoods:

p(x; |.S)

A neural network classifier trained on S vs B, estimates the decision function™: S(xl-) =

p(x;|S) + p(x;| B)
Which contains all the information required tor the likelihood ratio:
pxlp) I pvep|S) +upp(x;|B) s(x;) ny
— — ' B
pxilp=0) p-vg+up p(x;| B) povs+rg 1 —=s(x)

Same observable s is optimal to test all 4 hypotheses!
* Equal class weights No need to develop separate analysis per hypothesis y o4



What breaks down?

— MO+ [My(X) 42Re(GLIOM(X))
—— S—— —

= [M,(X) + My ()P

P,(X) Py (X) P;(X)
— ° ° (.X S)
Nexp T //t S + B+\//7 I A neural network classifier trained on S vs B, estimates the decision function™; S(xl-) = P4 |
p(x;|S) + p(x;| B)
Which contains all the information required for the likelihood ratio:
pglw) 1 peugp| S +uppi|B) o s()
pxilp=0) p-vg+up p(x;| B) povs+urg 1 —s(x)

Same observable s is optimal to test all i hypotheses!
y No need to develop separate analysis per hypothesis u 54

No longer in this convenient spacial case: The same observable no longer optimal due to non-linear effects coming from
gquantum interference

Also does not generalise to an arbitrary theory parameter 0, (eg. Effective Field Theory parameters)

Can we modity the LHC analysis methodology to design near-optimal analyse for the general case?
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Cranmer et al

Estimating high-dimensional density ratios

Neyman-Pearson lemma: Likelihood ratio is the most powerful test statistic

p(D | p)
p(D | ref)

We want to compare likelihoods:

A neural network classifier trained on simulated samples from 0, vs p(xi ‘/41)

- - i - s(x;) =
simulated samples from ref, estimates the decision function: P(Xi ‘ ﬂl) 4 p(xi ‘ ref)

Which contains all the information required tor the likelihood ratio:

px; | py) _ s(x;)
plx;lref) 1 —s(x)

*x Optimal statistic to test each value of u
* We get the LR per event (unbinned)
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More diagnostics
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Normalized Events
o T 2 2 3

Rwt / Orig
o

O
o1

Re-weight closures for B

ATLAS Simulation Preliminary

__|_-

B Original

~--{--- S Original
—— S — B Reweighted

500 1000

My

1500

my, [GeV]

sSource
Target

RW

Normalized Events
o 2 2 =2 3

Rwt / Orig
o

N
o

ATLAS Simulation Preliminary

L -4-- B Original |
~--{--- S Original
—— S — B Reweighted

-log(MCFM ME HZZ)

Matrix-Element-based Observable

(ggF from MCFM)
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0.5)}

p(xi|u)

(xi|

-2 log {p

Interpretability:
Which phase space favours one hypothesis over another?

—2 - log

P |p=1)

250 500 750 1000 1250 1500 1750 2000
my, [GeV]

—2 - log

|

|llll|llll

1.5)

p(xi|)

(x|

-2 log {p

P(x:|u = 1.5)
Plx;lp=1)

llllllllllllllllllllllllllllllllllll

ATLAS Simulation Preliminary

Illllllllllllllllll

[ | | |

-||||||IIII|IIII

1111111111111111111111111111111111

250 500 750 1000 1250 1500 1750 2000
My [GeV]
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Events

Data/Exp(u =0)

Data-MC validation

NN observable Ny
9
- .
107~ ATLAS Preliminary 77 _
107— ATLAS Preliminar _ ~ - e 9
V5 =13 TeV, 140 fo- ggjﬁé T Vs =13TeV,140 fb 9922
B Q7742 105 Bl qq - ZZ+72]
105 BEm Other Backgrounds — B B Other Backgrounds
—— Exp. Best Fit —, Cxp.Bestr
1 03 | + Data B 1 03 | + Data B
10
101
=)
I:I_ 1.25—_ Exp(u = 4)/Exp(u =0) * N
T s = S PP SR R 2 1.00 Lﬁ——?——— ——JL ————————————————————— —
¢ it
0.5\ + + S 0.751 _
| | | D | |
0.95 1.00 1.05 1.10 520 300 400 600 1000

p(x|u =0.0, a)/p(x|u =1.0, a) M4, [GeV]



Data / Exp

—_
o O

IIII|IIII HEREEREA

O
o

Data-MC validation

Different NN observables

— ATLAS Preliminar
| Vs =13 TeV, 140 fp~1

| T

| T T T |

qq —» ZZ
g9 » (H—-)ZZ —
Bl qgg-o> H-)ZZ+2]
Bl Other Backgrounds —
— Exp. (u=0.3)
¢

Data
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Neyman construction
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Neyman Construction

* Jo build confidence intervals, we need to ‘invert the hypothesis test

« Generate pseudo-experiments (‘toys’) and determine 1o & 20 Cl as a function of parameter of interest

0.0/"=0.0)

p(ty

10’

1001+

101

1072

1073

ATLAS Simulation Preliminary
—— Pseudo-experiments (u’=0.0)

10 Cl (t,u=0.0 <0.66)
--- 20 Cl (tluzo_o <4.46)

10lu"=1.0)

p(ty

10’

10°

101

1072

ATLAS Simulation Preliminary
—— Pseudo-experiments (u'=1.0)

10 Cl (t,u=1.0 <1.37)
--- 20 Cl (ty=1_o§4.21)
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Negative Weighted Events

1. Start from a positive weighted reference sample instead
2. Re-weight to intended parameter point

3. Throw toys from this sample

_ V(ll"l’a) . p(‘xi‘/’t’a) . wljwt—ref

rwt-ref N WAsnnov l
Viwt-ref  Prwt-ref (X i)

: ; (u, @)

W

04



Uncertainty from finite training samples

69



Estimating the variance on mean: Bootstrapping

Want to estimate mean of population

o PMLQ&LOM

QQ*SQMPL@.
wikh
replaaemen&

Sample e 1
Mean 3 !

Eskimate variance o
Fhe mwean

Image: Source
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https://www.lancaster.ac.uk/stor-i-student-sites/jack-trainer/bootstrapping-in-statistics/

Quantifying uncertainty on estimated density ratio

w; = w; - Pois(1)
e Train an ensemble of networks, each on a Poisson fluctuated version of

the training dataset

 Ensemble average used as final prediction, estimate the variance on
mean from bootstrapped ensembles

INPUT

\j

Neural Network #1 Neural Network #2

OO

S
=&

QOO

Neural Network #3

QOO

\

l

OUTPUT

Image: Source

6/


https://medium.com/@alexppppp/how-to-train-an-ensemble-of-convolutional-neural-networks-for-image-classification-8fc69b087d3

Quantifying uncertainty on estimated density ratio

w; = w; - Pois(1)
e Train an ensemble of networks, each on a Poisson fluctuated version of

the training dataset

 Ensemble average used as final prediction, estimate the variance on
mean from bootstrapped ensembles
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https://medium.com/@alexppppp/how-to-train-an-ensemble-of-convolutional-neural-networks-for-image-classification-8fc69b087d3

Quantifying uncertainty on estimated density ratio

w; = w; - Pois(1)

e Train an ensemble of networks, each on a Poisson fluctuated version of

the training dataset

 Ensemble average used as final prediction, estimate the variance on

mean from bootstrapped ensembles

Ensemble Members

Distribution of NN predictions for example events
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https://medium.com/@alexppppp/how-to-train-an-ensemble-of-convolutional-neural-networks-for-image-classification-8fc69b087d3

Quantifying uncertainty on estimated density ratio

w; = w; - Pois(1)

e Train an ensemble of networks, each on a Poisson fluctuated version of

the training dataset

 Ensemble average used as final prediction, estimate the variance on

mean from bootstrapped ensembles

* Propagate with spurious signal method

Ji(w) = [(u + a - Apu(p))

Constraint term: Gauss(0,1)
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https://medium.com/@alexppppp/how-to-train-an-ensemble-of-convolutional-neural-networks-for-image-classification-8fc69b087d3

Combination with histogram analyses

Lcomb(,ua a’) _ qull(,ua CV)

Lref Lref

LhiSt (lu ’ a/)
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Hessian:

Pulls:

Post-fit Impact:

Calculating pulls and impacts in JAX

—1
. 1 0°2 7@
— .
=2 dada,

021

92 Ouday

A, a) =

(ﬁaa) X VCk )

— 2In(Ly(pt, @)/L, )

69



Vertical interpolation

+ Cl’k
(Vj(alg)) &) > |

vi(a;)
Gi(ag) = 1+Z jcna) —l<ap <1
095
(V;§a§;) ax < -1

With some continuity requirements

(8j (i, CVZ)) o

gi(xi,ar) =41+ Z CnQ),

n=1

(8 (xis ;)"
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Physics analysis results
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Impact of nuisance parameters

Systematic Uncertainty Fixed Mofi-shenn Value at which ¢, . =4
NSBI analysis  Histogram-based

All (stat-only) 1.96 2.13

Parton shower uncertainty for gg — ZZ (normalization) 2.07 2.26

Parton shower uncertainty for gg — ZZ (shape) 2.12 2.29

NLO EW uncertainty for gg — ZZ 2.10 2.27

NLO QCD uncertainty for gg — ZZ 2.09 2.29

Parton shower uncertainty for gg — ZZ (shape) 2.12 2.29

Jet energy scale and resolution uncertainty 2.11 2.26

None (full result) 2.12 2.30
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Full probability model, input variables

1

p(x |l“off-she11’ luoff-shell) = X

EW
V('uoff—shell’ M ot-shell

gek ggF gF
Hogt-shentV's ps (x)+\/“oﬁ-she11 |6 (%) + vy pB H(x) +

HoshenVs | Ps (%) + \/ 'uoﬂ“-shell pr (x)+vg pp (%) + vaipni(x)
Variable Definition
o quadruplet mass
mxz1 /1 mass
myz» /> mass
cos 0™ cosine of the Higgs boson decay angle [q; - n,/|q]|]
cos 0 cosine of the Z; decay angle [—(q2) - q11/(|q2] - |q11])]
cos 6, cosine of the Z, decay angle [—(q1) - qo1/(|q1] - |q21])]
D A decay plane angle [COS_I(nl ) nsc) (ql ) (111 X nsc)/(lqll ) |Il1 X nsc|)]
o angle between Z;, Z, decay planes [cos™'(n; - n2) (q; - (n; X n)/(|q1] - [m; X ma|)]
p‘}f quadruplet transverse momentum
y* quadruplet rapidity
Riets number of jets in the event
mij; leading dijet system mass
An;; leading dijet system pseudorapidity
A ; leading dijet system azimuthal angle difference
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Data / Exp
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Pre-selection region definition
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— 1.0+Interf/Exp.
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Number of Events

Traditionally ignoring systematic uncertainties during analysis optimisation

© PRD.104.056026: Aishik Ghosh, Benjamin Nachman, and Daniel Whiteson
Experimental uncertainties: » Current analyses strategies optimised while ignoring

Eg. Inaccuracies in the calibration of our detector systematic uncertainties

 Added in post-facto

2=0.9  Leads to loss in sensitivity compared to uncertainty-
30000~ z=1.0 aware optimisation (see details)
e 2=111
20000 -
|- Z]v* — TlepThad:
100001 - '—L tt, W + jets
"L HiggsML Dataset
01— - ——— '
0 50 100 150 200 250

P MET (Gev)
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https://doi.org/10.1103/PhysRevD.104.056026

Number of Events

Traditionally ignoring systematic uncertainties during analysis optimisation

 PRD.104.056026: Aishik Ghosh, Benjamin Nachman, and Daniel Whiteson

Experimental uncertainties: » Current analyses strategies optimised while ignoring
Eg. Inaccuracies in the calibration of our detector systematic uncertainties

 Added in post-facto

2=0.9  Leads to loss in sensitivity compared to uncertainty-
30000 2=1.0 aware optimisation (see details)
s 2=111
20000 -
|_ Z/’y* > TiepThad, — Uncer.tainty Aware Data Aug.mentation
10000 - i _ _ — Baseline — Adversarial
[} tt, W + jets 10
| '1 HiggsML Dataset
0L - °
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(NLL)

Narrower is better

P MET (Gev)

NLL -\min
AN

N

Ditference b/w post-facto and uncertainty-aware

o
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https://doi.org/10.1103/PhysRevD.104.056026

Avoids binning data into histograms, which is another lossy compression

Information on individual events lost!

! !
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Avoids binning data into histograms, which is another lossy compression

Information on individual events lost!

! !




p(theory | data) =

p(data | theory)p(theory)

p(data)
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what we all
want

?‘terio r)

p(theory | data) =

p(data | theory)p(theory)

p(data)
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what we all
wawnt

?‘terio r)

p(theory | data) =

Likelthood

e

p(data | theory)p(theory)

p(data)
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what we all
wawnt

?‘terio r)

p(theory | data) =

Likelthood Prior

A

p(data | theory)p(theory)

p(data)

/

Evidence
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—1.90}
2 —1.95]

—2.00]

Which neutron stars should we measure next ?

Test potential improvement in sensitivity coming from new
measurements

Could inform decisions on which stars to measure next!

|
5 stars

[ 1 10 stars
1 20 stars
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Most sensitive method for EoS inference to date!

NP priors A ,pred — A1 truth A2,pred — A2, truth Combined
p(v) Method v o v o Ttot
Pretend that nuisance o ML-Likelihoodgos -0.02 0.066 0.01  0.070 0.096
parameters known NN (Spectra) 0.02  0.066 0.01  0.075 0.099
exactly - NN(M, R via XSPEC) -0.03 0.065 0.01  0.055 0.085
NLE 0.00 0.056 -0.01 0.070 0.090
tight ML-Likelihoodgos -0.02 0.078 0.03 0.081 0.112
NN(Spectra) 0.02 0.085 -0.02 0.077 0.115
NN(M, R via XSPEC) -0.03 0.081 0.01  0.056 0.098
Realistic scenarios: NLE 0.00 0.066 -0.02 0.071 0.097
\loose ML-Likelihoodgos -0.04 0.089 0.03 0.081 0.120
NN(Spectra) -0.03 0.131 -0.01 0.078 0.152
NN(M, R via XSPEC) -0.03 0.123 0.01  0.058 0.136
NLE 0.00 0.085 -0.01 0.074 0.113
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