

Test Beam Prototype Simulations

Artur Hoghmrtsyan

Simulation Setup

https://github.com/eic/epic/tree/ main/build/epic_eeemcal_only.xml

Prototype Simulations

<u>Particle Gun</u>

Position (0,0,-40mm) Particle - e⁻ Energies - 1,2,3,4,6 (Gev) Energy Spread - 158 (MeV)

Problem from the last update

Fixed:

Distance between crystals was more then 1mm

Deposited energy in Mono energetic case 1x1

Deposited energy in Mono energetic case 3x3 configuration

Energy Resolution for Monoenergetic 1x1 vs 3x3 cases

Everything looks normal

Deposited energy in Monoenergetic case 5x5

10/25/2024

Energy Resolution Plots

Monoenergetic 5x5

All configurations

Deposited energy in DESY energetic case 5x5

Energy Resolution for Mono vs DESY 5x5 matrices

Big effect for low energies

Smeared by number of Photoelectron

Gaussian Smearing Calculation: For each deposited energy E_i (in GeV)

$$\sigma = \frac{1}{\sqrt{10000 \cdot E_i}}$$

PWO - 30 photo-electrons/MeV

SiPM – 30% efficiency

Sum of Photoelectrons for Monoenergetic case

Sum of Photoelectrons for DESY case

Position Resolution analysis

Uniformly distributed x coordinate over the width of central crystal

Rec. vs Gen. X positions

Logarithmic weights $x = \frac{\sum_{i} w_{i} x_{i}}{\sum_{i} w_{i}} \quad w_{i} = \max\left\{0, \left[W_{0} + \ln\left(\frac{E_{i}}{E}\right)\right]\right\}$

