

C-AD Machine Operations in Run-25/26 (20/28 weeks) and Transitioning to the EIC

Preparations for Run-25/26 Operating scenarios Other beam time requests Transitioning to the EIC

Michiko Minty Associate Chair for Accelerators and Applications Accelerator Division Head

BNL NPP 2024 PAC 7 November 2024

Preparations for Run-25/26

Major Shutdown Activities Prior to Run – 25/26

Ion Sources

- EBIS work for RHIC Run-25 with high-intensity Au (see later slides)
- LION source installation

LINAC

- First full LINAC maintenance since 2019
- Refurbish Bldg. 930 backup chiller; air handlers (continuing)
- IRR/ARR preparations

AGS Booster

- Vacuum valve replacement and bake
- Gauge instrumentation replacements
- 911 chiller replacement (supplies Booster RF cavities)
- LLRF upgrades (continuing)
- IRR/ARR preparations

AGS

- IRR/ARR preparations
 - Lighting and legacy cable removals
 - Cable tray / trench remediation (continuing)

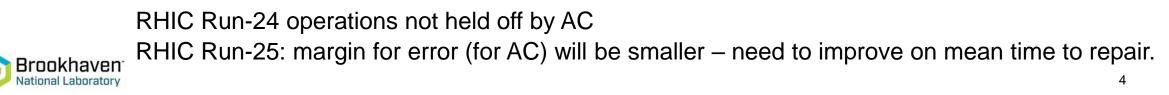
RHIC

- No major accelerator upgrades planned
- Address higher He leak rate identified in Run-24
- 56 MHz cavity (commissioning in Run-24)
- "Early removals" for EIC as schedule and staffing allow (less than planned, focus on E-Lenses)

Sitewide

- Possible tower 7 Motor Control Center and Switchgear upgrade
- Main Feeder MPO upgrades to continue
- High tension wire pole replacement
- Alternate feed upgrade
- Temple Place upgrades

Focus on EBIS preparation, IRRs and ARRs, and early removals for the EIC.


Reliability - operation during summer months

Experiment readiness led to accelerator operations during the summer (Run-23 and Run-24). Concerns and mitigation plans detailed in 2022 RHIC Science & Technology Review:

Concerns	Heat	Many support buildings not equipped to operate with sustained high temperatures Many unique AC systems	
	Humidity	Reduced cooling tower efficiency, increased load on AC equipment Condensation issues	
	Power	More frequent power dips and/or outages (storm related), possible brown-outs	
	Air Conditioning	Aging equipment, some obsolete controls and parts	
Mitigation	 gation Maintenance ensure existing systems are operable at full capacity verify existing AC spares inventory (9 portable units, 6 portable high-volume fans) 		
	AC ductwork modifications		
	 New procurements spare AC systems for RHIC alcoves (5) portable AC units for RHIC service buildings (6) for power supply quench detection racks 		

RHIC Run-23: accelerator availability impacted by air conditioning (AC) availability in building containing RHIC main magnet power supplies.

RHIC Run-24: strengthened mitigation efforts (next slide), AC tech support, availability tracking efforts

2024 RHIC Run Air Conditioning Systems

Completed Repairs during RHIC Run

- 1000P condenser Fan Replacement
- 1002A Thermostat Failure
- 1006 STAR Control Room System Replaced
- 1008IR Condenser Fan and Blade Replacement
- 1009A Refrigerant Leak
- 1002D, 1002F, 1005E, 1007W, 1010A, 1010B -**Bard Unit Failures**
- sPHENIX Chiller Coil Replacement, Electrical grounding of IR Split Unit and sPHENIX – Gas Mixing House AC Unit
- 1012 50 ton package unit failure, split AC unit
- 1004A split AC unit
- 1006 200 ton chiller
- 1004B control room and high bay AC units
- 1006 rooftop chiller

1004A Rental AC Unit

Completed Replacements

- E18, A18, B18, 1002 Bard Units
- 1006 Control Room

Upcoming RHIC Maintenance Replacements

- 1007W, 1005E Bard Units
- 1004A 75 Ton Package Unit
- 1004B 50 Ton Package Unit
- L18 12.5 Ton Package Unit
- ~ 15 alcove split AC units

RHIC Run 25/26 Preparation

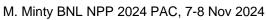
- Check existing spare parts inventory to replenish those used in Run-24
- Procure contract to ensure availability of larger capacity AC systems with portable generators (May - Oct 2025)

1008 AH Portable AC Unit

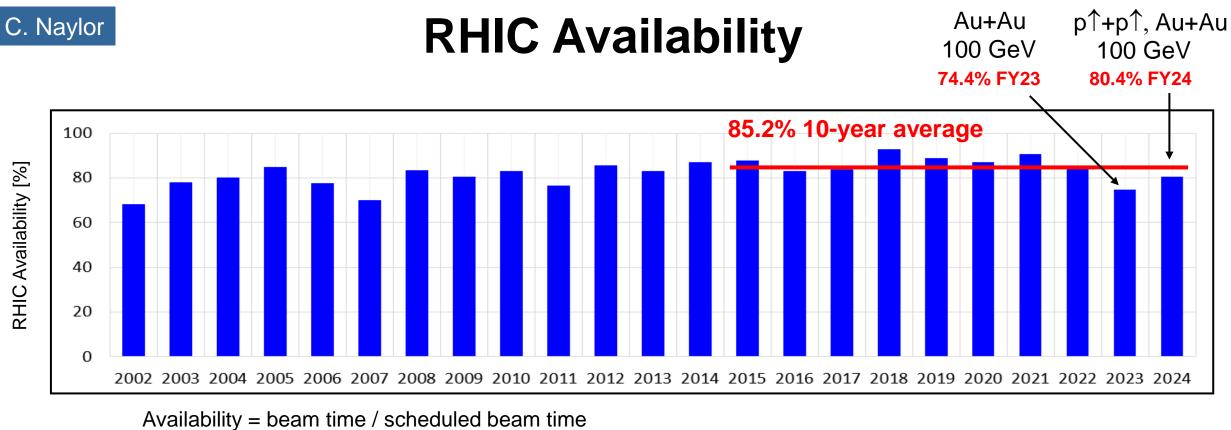
1004A Portable

AC Unit

1004B Replacement AC


1012A Rental AC Unit

1004B 2nd Unit



911 Rental Chiller

Availability goals: 82.5% (< FY20), 85% (FY21-FY22), 82.5% (FY23), 80.0% (FY24)

RHIC Run FY24: **80.4%** Average over last 10 years: **85.2%**

Availability primarily impacted by environmental factors (heat, humidity, storm-related issues) in Run 2023 and by summer storm-related issues in Run 2024.

Availability goal met in FY24.

Extended EBIS

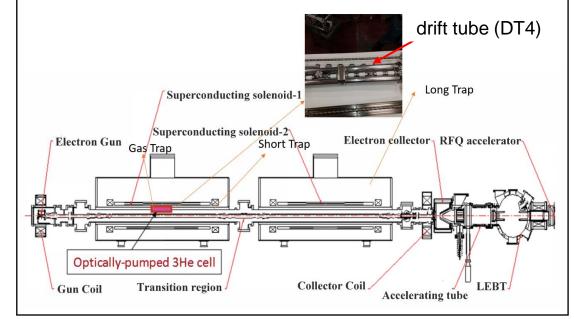
Goals: improvements over EBIS

- ~ 40% more ion intensity
- 2 mA polarized ³He⁺⁺

Brookhaven

National Laboratory


- better performance with noble gases (gas cell)
- provision of ions from H to U


Status:

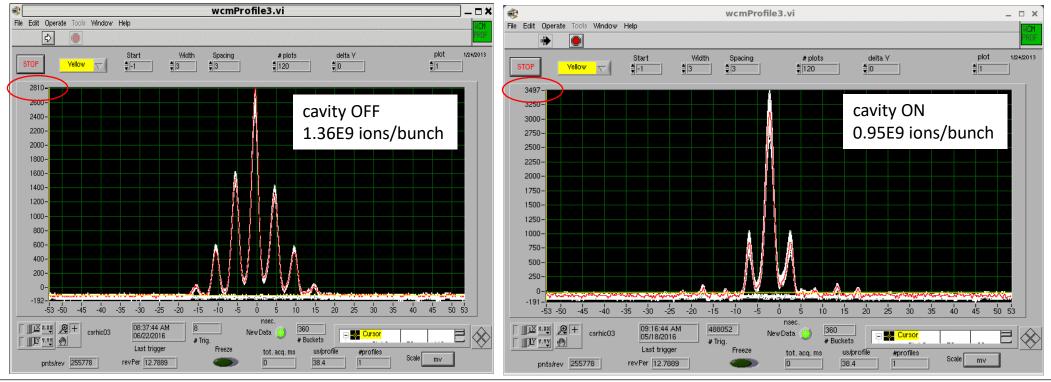
- operating for NSRL (since Apr 2023)
- demonstrated all ion species (Jun 2023)
- outstanding issues for high rep-rate operation:
 - low cathode lifetime (new manufacturer)
 - voltage breakdown in (smaller diameter) drift tubes (DT4 and DT6)

Parameter	Required for run25	Achieved
Electron current	> 8 A	6.7 A
# Au ion single Pulse @ Xf108	1.2 E9	1. E9
# Au ions 12 Pulse mod @ Xf 108	1.2 E9	8.E8(stable for 10-20 min only)

E. Beebe, D. Raparia, J. Ritter, S. Kondrashev

Next steps: cathode replacement (Nov 2024), increase DT4 and DT6 diameter (if needed) Plan B: provision of Au beams from Tandem (as in RHIC Run-23).

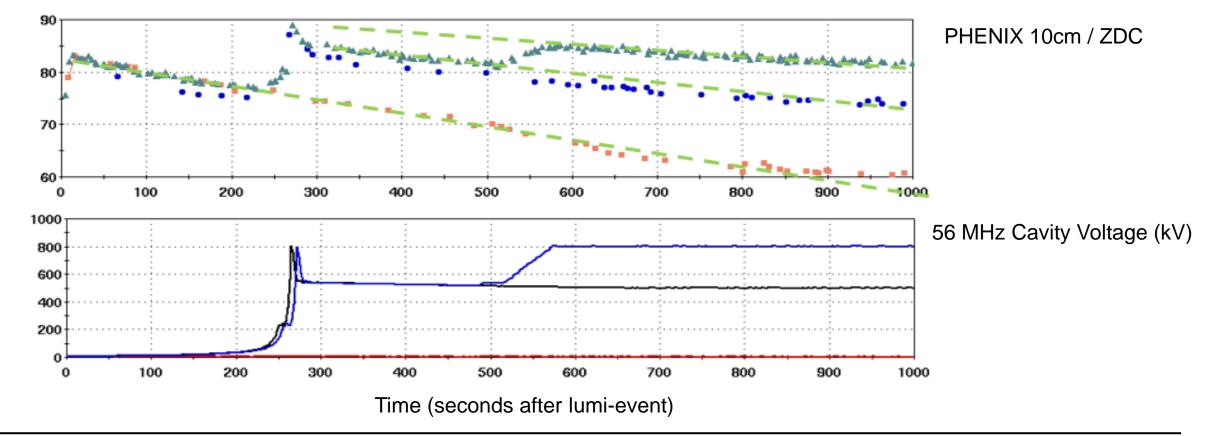
56 MHz cavity – effect on bunch distribution


Increases luminosity in the detector's vertex

- increases peak current in primary bunch and reduces current in satellite bunches
- also enables smaller β^{\star} at the interaction point due to reduced hourglass effect

M. Blaskiewicz, K. Smith, K. Mernick, S. Polizzo, F. Severino, Q. Wu, A. Zaltsman

Demonstrated improvement in longitudinal focusing during run in 2016 (d-Au) Yellow ring (Au) wall current monitor


Peak current with 56 MHz SC cavity substantially higher even with lower bunch intensity

M. Minty BNL NPP 2024 PAC, 7-8 Nov 2024

56 MHz cavity – effect on luminosity

Substantial (>15%) increase in luminosity in PHENIX (+/- 10 cm) vertex with the 56 MHz cavity

Run-16 with 56 MHz SC RF cavity OFF and ON Blue: 1.95 E9 deuterons / bunch, Yellow: 2.09E9 Au ions/bunch

56 MHz cavity recommissioned during Run-24 up to 1.5E9 Au ions/bunch (next year aim for 1.8E9)

Qiong Wu

et al

Operating Scenarios

Run 25/26 with 20/28 weeks Au+Au at 100 GeV/n

Note: 2 cryo-weeks were already spent to extend Run-24

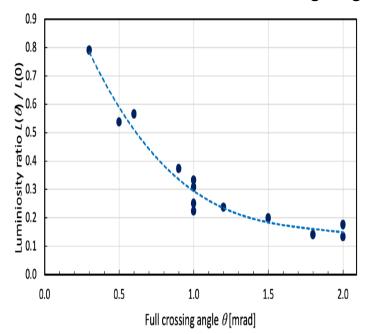

RHIC Run start	0.5 weeks	Final cooldown to 4K
Set-up mode	2.0 weeks	RHIC re-commissioning and MVTX background studies
Ramp-up mode	0.5 weeks	8 hours/day for experiments
Data taking for physics	14.5 / 22.5 weeks	24/7 operation for sPHENIX and STAR
Controlled turn-off	0.5 weeks	End of run after 18 / 26 weeks

Table 1: Demonstrated and projected luminosities for 100 GeV/nucleon Au+Au runs.

Measured lumi ratio with crossing angle

W. Fischer et al

Parameter	Unit	FY2007	2010	2011	2014	2016	2023	2025E
No of bunches k_b		103	111	111	111	111	111	111
Ions/bunch, initial N_b	10 ⁹	1.1	1.1	1.3	1.6	2.0	1.65	1.75
Envelope function at IP β^*	m	0.85	0.75	0.75	0.70	0.70	0.70	0.70
Beam-beam parameter <i>支</i> /IP	10-3	-1.7	-1.5	-2.1	-2.5	-3.9	-3.2	-3.4
Initial luminosity L _{init}	10^{26} cm ⁻² s ⁻¹	30	40	50	80	155	101	115
Average/initial luminosity	%	40	50	60	62	56	56	60
Average store luminosity L_{avg}	10 ²⁶ cm ⁻² s ⁻¹	12	20	30	50	87	44	68
Time in store	%	48	53	59	68	65	44	50
Max. luminosity/week ($\theta = 0$)	μb ⁻¹	380	650	1000	2200	3000	1300	2300
Min. luminosity/week ($\theta = 0$)	μb ⁻¹							1300

Planning basis: 22 week shutdown 4K cooldown starting 24 Mar 2025

Other possible operating scenarios: p+p, p+Au

Table 2: Demonstrated and projected luminosities and polarization for p↑+p↑ and p↑+Au runs at 100 GeV.

					p↑+p´	↑		p↑+	Au
Parameter	Unit	FY2008	2009	2012	2015	2024	2025E	FY2015	2025E
No of colliding bunches k_b		109	109	109	111	111	111	111	111
Protons/bunch, initial N _b	1011	1.5	1.3	1.6	2.25	1.95	1.95	2.25/0.0016	1.7/0.0016
Envelope function at IP β^*	m	1.00	0.70	0.85	0.85	0.85	0.85	0.85/0.70	0.85/0.70
Beam-beam parameter ξ∕IP	10-3	-5.3	-6.3	-5.8	-9.7	-8.4	-8.4	-5.3/-4.1	-5.3/-3.1
Initial luminosity <i>L</i> _{init}	10 ³⁰ cm ⁻² s ⁻¹	35	50	46	115	74	74	0.88	0.66
Average/initial luminosity	%	65	56	71	55	58	58	51	51
Average store luminosity Lavg	10 ³⁰ cm ⁻² s ⁻¹	23	28	33	63	43	43	0.45	0.34
Time in store	%	60	53	59	64	~60	60	65	50
Max. luminosity L/week	pb-1	7.5	8.3	9.3	25	17	17	0.140	0.115
AGS extraction, Pmax	%	55	65	72	68	~65	65	68	65
RHIC store average , <i>P_{max}</i>	%	45	56	59	57	54	54	60	54

Projections based on past demonstrated experience.

sPHENIX MVTX auto-recovery rates with Au+Au

Working hypothesis: off-momentum Au ions lost on aperture and fragments reach sPHENIX MVTX

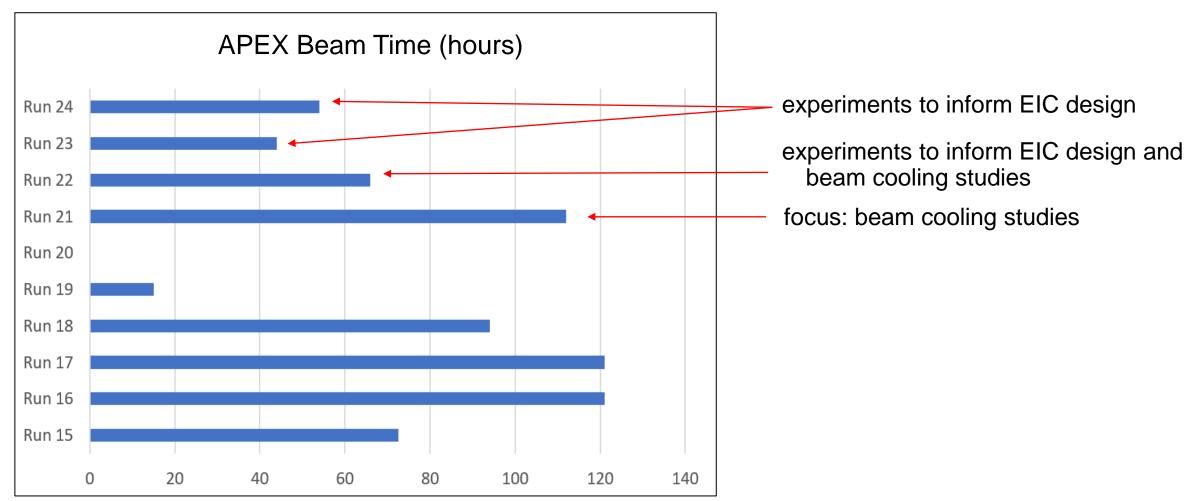
Note: stray particles difficult to detect (MVTX auto-recovery rate upsets not correlated with signals in any RHIC beam loss monitors)

C-AD Task Force established (led by A. Drees) with accelerator and detector physicists

Simulations underway or planned to simulate several approaches: particle tracking under various scenarios (see K. Hock's presentation as an example) particle tracking with relocated mask serving as momentum collimator addition of absorber material close to MVTX (FLUKA simulations)

Realignment of sPHENIX beam pipe not under consideration at this time.

Other Beam Time Requests



Beam Time Requests (not including BURs)

Proposed Activity	Duration	Relevance / Comment
APEX for EIC	up to 2 weeks	needed to inform EIC design
p+Au	5 weeks minimum	high priority per past PACs, cancelled in 2024 due to funding constraints
FXT at STAR	3 weeks	3 energies, 3 species, 3 targets (reference STAR BUR)
CeC	2-3 weeks	advancements in accelerator science

Accelerator Physics Experiments (APEX) - Overview Y. Luo, H. Huang

APEX workshop held March 2024 <u>https://indico.bnl.gov/event/22322/</u>.

featured:

Brookhaven

- comprehensive list of EIC-related APEX requests for 2024/2025 (next slide)
- detailed plans for experiments

APEX 2024/2025 Objectives

Торіс	#Studies	requested Hours	Relevance for EIC
Collective Effects	2	14	confirm vacuum design
Flat Beam	3	84	Feasibility flat beam
Instrumentation	3	14	Confirm concepts & designs
Dynamic Aperture	2	6	Confirm simulations
Transition Crossing	3	24	Ensure concept
Hadron Polarization	4	46	Confirm simulation and design
Beam* Cooling	9	133	Confirm cooling feasibility, simulation and design
Beam Optics	2	18	Backup simulations
Radial Shift	1	32	Confirm feasibility of large beam radial offset in HSR

*coherent electron cooling, electron cooling, and stochastic cooling

Total of 29 studies, 371 hours @ 46.4 shifts, 15.5 days, 2.2 cryo weeks

APEX in 2024

Run-24 APEX requests: 123 hours (protons), 56 hours (gold ions)

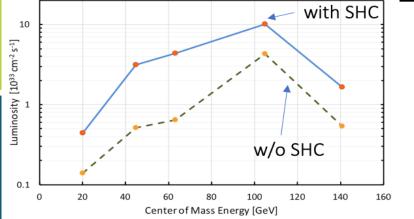
Run-24 APEX experiments performed : 87 hours (protons), 0 hours (gold ions)

		Beam Time	Beam Time Time	
Experiment Title	Spokesperson	Request (hours)	Used (hours)	Status
injection study for electron cooling	A. Fedotov	9	4	complete
injection study for the EIC with dual RF systems	D. Kayran	7	3	complete
global coupling measurement and correction with TBT data	C. Liu	6	4.5	
IP8 optics tuning with crossing angle and short vertex	X. Gu	12	6	
resonance island transiti on jump, part I	H. Lovelace III	8	12.5	complete
measurement of the BPM electrical offset with beam scan	I. Pinayev	3	3.8	complete
collective effect studies in RHIC for the EIC parameters	A. Blednykh	8	12	complete
beam-based alignment for RHIC rings	M. Sangroula	6	2	
rhic broad band impedance	M. Blaskiewicz	8	4	complete
RHIC 3D stable spin direction measurement	V. Schoefer	6	7.5	complete
test of tagging He3+ breakup in Hjet	F. Rathmann	22	15.5	complete
RHIC octupole limitations	S. Verdu-Andres	12	8.3	complete
variation of IPM profile vs voltage setting	M. Sangroula	0	1.5	complete
RHIC stray field in RHIC at high dipole currenents	X. Peng	2	3	complete

APEX in 2025

Assumptions

- no APEX before physics program started (assume 2 weeks for this in Run 25/26)
- one APEX session = 15 hours APEX +1 hour back-to-physics
- APEX takes place every other week (standard practice)


Status

- total hours approved to date (by review committee): ~ 20 sessions
- development of additional experiments in progress
- 20-week run supports 9 sessions, 28 week run supports 13 sessions

CeC: Proposal for dedicated time for CeC demonstration <u>after</u>

completion of RHIC physics Run 25

NAS Assessment of U.S.-Based EIC Science: <u>The accelerator challenges are two</u> <u>fold: a high degree of polarization for both</u> <u>beams, and high luminosity.</u>

Demonstration of CeC would provide confidence that EIC cooler could do the job

- CeC system is fully operational
 - ✓ Necessary beam parameters were demonstrated
 - ✓ High gain Plasma-Cascade Amplification was experimentally demonstrated
 - ✓ Ion imprint in electron beam was experimentally observed
- Remaining challenge demonstrate stability

✓ Coherent electron Cooling remains the leading candidate for EIC to achieve design average luminosity of 10³⁴ cm⁻²sec⁻¹

V. Litvinenko

- ✓ We propose to have a dedicated 3-weeks RHIC run to ensure experimental demonstration of Coherent electron Cooling technique
- ✓ Two-step program towards successful demonstration of CeC
 - ✓ During RHIC physics run we will bring all CeC systems to full readiness
 - ✓ 3 weeks of RHIC operation with Au ion in Yellow at CeC operational energy to complete following tasks:
 - 1. Develop RHIC ramp to the CeC operations energy -2 days
 - 2. Adjust CeC systems to new stray fields and restore the e-beam quality -2 days
 - 3. Propagate e-beam in the CeC section, and align ion and electron beams -3 days
 - 4. Match relativistic factors of ion and electron beams -1 day
 - 5. Restore High-Gain Plasma-Cascade amplification with CW e-beam 3 days
 - 6. Fine system tuning and demonstration of Coherent electron Cooling -10 days

Important: Previous experience proved that any switching from regular RHIC physics operation to dedicated CeC shift or APEX session resulted in significant loss of time. This is the main reason why we suggest to separate CeC dedicated RHIC operation from RHIC physics run. Still, it is possible to move one week of dedicate (for example as part of APEX) during the physics run and reduce post-physics CeC tun to two weeks.

CeC: Proposed modes of operation

- V. Litvinenko
- □ To maximize chances for success, we will develop two modes of operation during RHIC physics run, below and above RHIC transition energy.
- Lower energy of operation would provide for better quality of ion beam and easier choice of electron beam parameters, but this will new mode to develop

Best mode will be selected for the demonstration

Parameter	Mode 1	Mode 2
γ , relativistic factors of the beams	19.57	28.5
Au ion beam energy, GeV/u	18.2	26.5
Electron beam energy, MeV	10	14.56
Peak current, A (core, 50% of the beam)	≥22	≥45
Normalized emittance (core, $> 50\%$ of the beam), μ m rad	≤ 1.5	≤ 1.5
RMS relative energy spread (core, $> 50\%$ of the beam), 10^{-4}	≤ 2	≤2
Energy flat top (core, > 50% of the beam), $ 10^4 \delta\gamma/\gamma $	< 1.5	<1.5

Transitioning to the EIC

Goals for C-AD support of the Hadron Injector Complex

- Maintain accelerators and infrastructure for start of EIC operation; provide hadron beams when needed by the EIC
 - continue regular maintenance (next slide)
 - validate all systems with beam annually
- Continue accelerator operations in support of application programs
 - Tandem self-supported (stand-alone non-designated user facility); backup pre-injector
 - BLIP (funded by DOE Isotope Program) supports EBIS and LINAC operation
 - NSRL supports source and AGS Booster operation
- AGS plan for ~1 month/year development of polarized beams (protons, He3) for the EIC
- Complete Accelerator Readiness Reviews
- Ensure well-trained staff supporting the injector complex

25-Year Upgrade Plan for the Injector Complex

3 Priorit	ty Machine/Program	Y Group	Info provided by:	Project Name	Description	This list is used to
5	B1 BRHIC	⊟RHIC PS	Don Bruno	RHIC Quench Detector Upgrade	□RHIC Quench Detector Upgrade	1113 1131 13 113 113 113
6		⊟RF		□PLC upgrade	Replace outdated PLC5 system	prioritize upgrades based
7		⊟Instrumentation	BRob Michnoff, Lenny DeSanto	□Collimator motor controller upgrade to AMP controllers		prioritize upgrades based
8	E	0 ⊟ES&F	BM. Albanese	□912 SRF Test Facilities		on available funding
9				□912 Pump Room Upgrade	⊟ For Cryo	on available fulfulling
10	⊟AGS	⊟ Power Distribution	□PK Feng	□912 EEBA Outdoor Cable Trays	⊟Replacement	
11				□AGS Outdoor Cable Tray	⊟Replacement	
12		⊟Injectors	⊟Haixin Huang	AGS transverse damper amplifer	□Replace the obsolete amplifier	1
13	Booster	⊟Instrumentation	Bob Michnoff, Lenny DeSanto	Booster/AGS BPM upgrade	□upgrade V to Frequency board to V to Fiber, Fiber r	eceiver board
14		⊟Vacuum	Dan Weiss	Booster Vacuum		redundancy and features to improve service and relia
15		⊟Power Distribution	□PK Feng	BOOSTER Outdoor Cable Tray	⊟Replacement	
16		⊟Injector PS	□Ioannis Marneris, Ed Bajon	□New Booster MMPS with new building	□Replace the Existing Booster Main Magnet Power s	upply with a new design.
17	⊟Linac	⊟RF		BNL 210 Project	⊟40 yr. Future supply of 210 RF tubes 7835	
18		⊟Instrumentation	Rob Michnoff, Lenny DeSanto	□LPM Control system upgrade	□• improve faraday cup S/N ratio• replace laser fibe	r, repair laser system/optics• transition Faraday cup me
19	Boster/AGS	⊟RF	□Zaltsman, Severino	□PLC upgrade	Replace outdated PLC5 system	
20	⊟EIC	□Cryogenics	Roberto Than, Russ Feder	Leak Reduction Program: Central Plant	□Replace valves and flanges, etc. in 1005H Central Pl	ant for helium leakage reduction
21				□Leak Reduction Program: Corrector lead flow circuits	□ Replace compression fittings with welded/VCR fitting	ngs.
22		⊟RHIC preparation for EIC	C ⊟Joe Tuozzolo	□IR12 Polarized Gas Jet (2024)		
23				■Reconfigure IR12 IR block tunnel section for EIC space needs (2024)	Increase tunnel width	
24				□IR10 RHIC Blue spin flipper system (2023 or 2024)		
25				□IR10 RHIC eLens (2024) needed for EIC?		
26				□IR04 RHIC AC dipoles (CAD - 2022)	Remove system	
27				□IR02 CeC & LEReC External Beam Lines (TBD)		
28				B09DU7 or B03DU7 SC Snake Magnets and Power Supplies (2024)	□Remove for refuribishment	
29				□Complete fiducialization of the RHIC tunnel for laser trackers	⊟Survey upgrade	
30				□Survey check of the RHIC superconducting magnet cryostats that will be us	ed	□ 0
31	BLIP	⊟Instrumentation	Rob Michnoff, Lenny DeSanto	BLIP Raster LPM work	□repair laser system/optics , return system to an operation	erational state
32	⊟EBIS	⊟Source	BM. Okamura	RF amplifier for EBIS injector	□Solid state amplifiers (300 kW each) for EBIS RFQ and	nd IH LINAC
33	⊟RHIC , Injectors	⊟Controls Hardware	■M. Costanzo	⊟Mux system	□New/Replace with other	
34	⊟Injectors/ EIC?	⊟Controls Software	⊟John Morris	⊟MADC-II	⊟Software support for new Controls HW design to re	place MADC. Use cases at EBIS and in analog mux repl
35	⊟EIC-electrons	⊟Cryogenics	Roberto Than, Russ Feder	Bldg 912 SRF Cryogenic System Upgrade: 900W Helium Plant, Purifier, Vacu	uum New system for 4X increase in capacity for SRF test	facility
36				Bldg 912 SRF Cryogenic System: CryoDistribution to New SRF Bunkers	■New distribution from new cryoplant to 3 new SRF	
37	BRHIC/EIC CRYO	⊟Power Distribution	⊟PK Feng	⊟1005H 4160V MCC	□Substation 5F and 5G. Replacement	

Brookhaven National Laboratory

Cryo upgrades for the EIC

From EIC Accelerator Project Dependencies Review, 19-20 Aug 2024 (R. Michnoff, J. Tuozzolo)

Cryogenic Systems

- 912 Upgrade is most urgent.
- Central Plant Upgrade is needed before EIC startup
- Roberto Than & Russ Feder's Presentation

Project Sub-project		Estimate (\$M)	Basis of estimate	Funding Source
Central Plant	Cryo C&I Upgrades	2.0 - 2.5	Actuals + EJ	Capital Equipment
end-of-life replacements	Cold End Upgrade	5 – 6	Past Projects	Was AIP, need funding
(materials only)	Rotoflow Skids	2.5 – 3.0	Vendor Quotes	Was AIP, need funding
	Intercooler and Aftercooler HXs, and helium leak reduction	3.0- 3.5	Vendor Quotes	Was AIP, need funding
	Ambient Vaporizers + Piping	1.0-1.2	Past Projects	Was AIP, need funding
	AGS cold snake cryo coolers	0.6-0.8	Engineering Judgement	Need funding
Central Plant Total		14.1-17		
912 Technical Infrastructure	New helium liquefier plant and supporting eqpt and piping	7	Vendor Quotes	AIP
upgrade to support EIC SRF testing	New cryo-distribution to SRF bunkers	3 -3.5	Past Projects	Need funding
(materials only)	New purifier, relocated sub- atmospheric equip	1.5	Vendor Quotes	?
	Infrastructure improvements	.5	Past Projects	?
912 Upgrade Total		12 – 14		

Accelerator Safety, Readiness Reviews

Major effort for department

All legacy accelerators must undergo Accelerator Readiness Reviews

ARR Tandem	Nov 2022 – done
ARR AP Hot Cell (IP)	Dec 2022 – done
USI sPHENIX sc magnet (IRR w/ external)	Mar 2023 – done
ASE Change for RHIC (ODH)	Feb 2024 – done
ARR IP Cyclotron (IP)	Feb 2024 – done
USI sPHENIX isobutene use	July 2024 – done
Large Vertical Test Facility (LVTF)	Dec 2024 (Safety Analysis complete, no BHSO approval needed)
ARR ATF (ATRO, C-AD assisting)	Jan 2025
RHIC decommissioning	Aug 2025 (authorization basis docs approved by BHSO)
ARR Linac+Booster	Apr 2026 => effort partially estimated
ARR RF Test Facility 2 (new)	Sep 2026 (needed with DOE O420.2D, electrons >10 MeV)
ARR RF Test Facility 1 (ERL cave)	Mar 2027 (needed with DOE O420.2D, electrons >10 MeV)
ARRAGS	Oct 2027 => effort not yet estimated

... then need to get ready for EIC ARRs.

W. Fischer DOE 2024 RHIC Science & Technology Review

24

M. Minty BNL NPP 2024 PAC, 7-8 Nov 2024

Summary – RHIC Operations

Preparation for Run-25

 Focus on EBIS preparation (Tandem as back-up), accelerator reliability (e.g. AC issues), Accelerator Readiness Reviews, and early removals for the EIC

Operating Scenarios

- Au+Au at 200 GeV c.o.m for 20 or 28 weeks (less 2 weeks expended in Run-24)
- planning basis: 22 week shutdown with start-up on 24 Mar 2025
- Task force established to try to better understand and address high sPHENIX auto-recovery rates

Other Beam Time Requests

• Have multiple proposals: APEX for the EIC, p+Au, FXT at STAR, and CeC

Transitioning to the EIC

• Main objectives are to maintain the injector complex in a ready-state for the EIC, complete the necessary Accelerator Readiness Reviews, and staff development for future EIC operations

