

Stephen JD Kay University of York

ST. .

TIC Meeting 04/11/24

- Issues with mesh holders
 - Tolerance of holes too small, fibres did not flow
 - Thin material flexed when
 - W powder poured

- Issues with mesh holders
 - Tolerance of holes too small, fibres did not flow
 - Thin material flexed when W powder poured
- Increased hole sizes and holder thickness, switched to stainless steel (not brass)
- New set of problems!

- Issues with mesh holders
 - Tolerance of holes too small, fibres did not flow
 - Thin material flexed when W powder poured
- Increased hole sizes and holder thickness, switched to stainless steel (not brass)
- New set of problems!

Stephen JD Kay

- Thicker material \rightarrow variation in hole sizes
- Steel harder to machine \rightarrow tolerance issues

- Issues with mesh holders
 - Tolerance of holes too small, fibres did not flow
 - Thin material flexed when W powder poured
- Increased hole sizes and holder thickness, switched to stainless steel (not brass)
- New set of problems!
 - Thicker material \rightarrow variation in hole sizes
 - Steel harder to machine \rightarrow tolerance issues

But, good enough to work with!

University of York

Fibre Feeding

- Manually hand feed fibres through mesh
- Melt one end first

Fibre Feeding

Stephen JD Kay

- Manually hand feed fibres through mesh
- Melt one end first
- 448 fibres per module
 - Roughly two hours to hand feed one module
 - Need 180 modules eventually!
 - Small number of holes could not be populated

University of York

Fibre Feeding

Stephen JD Kay

- Manually hand feed fibres through mesh
- Melt one end first
- 448 fibres per module
 - Roughly two hours to hand feed one module
 - Need 180 modules eventually!
 - Small number of holes could not be populated
- End result looks good though!
- Next step is to separate meshes

University of York

Fibre Separation

- Need to pull apart 4 meshes and slot into place in mould
- Delicate process, difficult to separate
 - Friction due to tolerance on steel mesh design

Fibre Separation

Stephen JD Kay

- Need to pull apart 4 meshes and slot into place in mould
- Delicate process, difficult to separate
 - Friction due to tolerance on steel mesh design
- Lost small number of fibres (2-3) in separation process

04/11/24

3 /9

Fibre Separation

Stephen JD Kay

- Need to pull apart 4 meshes and slot into place in mould
- Delicate process, difficult to separate
 - Friction due to tolerance on steel mesh design
- Lost small number of fibres (2-3) in separation process
- Next, fill the mould with W powder

3 /9

<u>04</u>/11/24

Tungsten Pouring

Stephen JD Kay

 $\bullet\,$ Amount of tungsten required per module roughly in line with estimates (\sim 800 $\rm g)$

04/11/24

4 /9

Tungsten Pouring

Stephen JD Kay

- \bullet Amount of tungsten required per module roughly in line with estimates (\sim 800 g)
- Even steel meshes flexed slightly
 - Lost a few more fibres

University of York

4 /9

Tungsten Pouring Part 2

- Once nearly full, placed on vibrating table
- Remaining tungsten added slowly

Tungsten Pouring Part 2

Stephen JD Kay

- Once nearly full, placed on vibrating table
- Remaining tungsten added slowly
- Module then ready to add epoxy

University of York

04/11/24

5 /9

Tungsten Pouring Part 2

- Once nearly full, placed on vibrating table
- Remaining tungsten added slowly
- Module then ready to add epoxy
- Epoxy mixed and poured slowly whilst mould vibrated on table
 - No pictures of that, sorry!
- ${\rm \circ}~\sim75~{\rm ml}$ of epoxy used per module
- Cure in low temp oven

Stephen JD Kay

5 /9

University of York

• Even with mesh issues, finished module came out nicely

Stephen JD Kay University of York

"Here's one we made earlier!"

- Even with mesh issues, finished module came out nicely
- Removable from mould quite easily
- Excess was machined off

Stephen JD Kay

University of York

6 / 9

"Here's one we made earlier!"

- Even with mesh issues, finished module came out nicely
- Removable from mould quite easily
- Excess was machined off

Stephen JD Kay

• Eagle eyed viewers may have noticed the area of missing fibres

04/11/24

6 / 9

Measuring Up

Stephen JD Kay

• Measured dimensions and weight of module

University of York

04/11/24

7 /9

Measuring Up

Stephen JD Kay

- Measured dimensions and weight of module
 - Length/width consistent, meet design
 - Minor variations in thickness of module

University of York

• Likely due to levelling of vibrating table/bench

04/11/24

7 /9

- Completed module has been tested in the lab with cosmics
- Detector response looks good so far
 - See Alex's slides from last week for more details and some plots

Prototyping - Next Steps

- Completed module has been tested in the lab with cosmics
- Detector response looks good so far
 - See Alex's slides from last week for more details and some plots
- Readout board designed and in production
 - Populating with SiPMs

Prototyping - Next Steps

- Completed module has been tested in the lab with cosmics
- Detector response looks good so far
 - See Alex's slides from last week for more details and some plots
- Readout board designed and in production
 - Populating with SiPMs
- Mesh design revisited again and updated
 - Expected to arrive this week, will test and produce new modules ASAP

Prototyping - Next Steps

- Completed module has been tested in the lab with cosmics
- Detector response looks good so far
 - See Alex's slides from last week for more details and some plots
- Readout board designed and in production
 - Populating with SiPMs
- Mesh design revisited again and updated
 - Expected to arrive this week, will test and produce new modules ASAP
- Once readout board ready, will test in labs at York immediately
 - May be ready for testing in Mainz in early December

- Formatting text to fit "standard" layout of other sections
- Editing text for clarity
- Will incorporate any comments as received

- Formatting text to fit "standard" layout of other sections
- Editing text for clarity
- Will incorporate any comments as received
- DPD section/info being fleshed out further
- Need update on magnets section from BNL (?)

- Formatting text to fit "standard" layout of other sections
- Editing text for clarity
- Will incorporate any comments as received
- DPD section/info being fleshed out further
- Need update on magnets section from BNL (?)
- Current focus is on prototype production
 - TDR being updated in parallel