
Quick recap on H2GCROC

2

ProtoBoard2.0 - second iteration with the H2GCROC

Compatible design with the commercial
CAEN unit:
• Ease of testing with many collaborators:

• CAEN has slow readout, capable of

10kHz only in reality

Started with the commercial KCU105 FPGA
evaluation board:

• Multiple KCU’s are possible to combine

with single clock and trigger distribution
boards

Produced multiple boards total 864 channels

Synergy also with other detectors using HXGCROC (same firmware)

3

Bottle neck - for now
1.28Gbps

HGC

HGC
KCU

1.0Gbps UDP

KCU

PC

HGC

HGC
HGCROC data

FPGA identifier
Counter

The FPGA adds 2x32 bit words:
• ID to check in which line the data was

coming in, plus line number (32-bit)

• Counter added when the data is

received (32-bit counter)

Buffering in:
• HGCROC (32 deep)

• Too many samples would create

Hamming errors

• FPGA (few samples only)

Strategy:
It takes ~1µs to readout one sample from
HGCROC

Not to overwhelm the FPGA buffer
(implement dead time)

4

Stitching together events

500 1000 1500
Run number

0

50

100

Ef
fic

ie
nc

y
[%

]

Efficiencies:
Lines
KCUs
Machine gun
Event
Total

of events

0

50

100

150

200

310×
Line reconstruction
• find 5 lines per KCU

KCU:
• Reconstruct the full KCU input

(20 lines)

Machine gun:
• Collect all machine guns (41-

counter difference)

Event:
• Stitch together the two (or

more) KCU’s

Total:
• From number of lines in file to

reconstructed events

Collected 1.1TB of data in total, 700 runs in total now:
• Total of 150M events

• Does not include the calibration runs

• Different runs with different gains (changing the gain conveyer settings)

• Here calibration has to be made more quick as every settings change requires new calibration run

Total loss now (excluding the crashed jobs), defined when total efficiency is <90%, is 1.35% of the events

Here the jobs crashed

5

Some more details

0 500 1000
Time stamp

1−10

1

10

210

310

410

510

610

Ev
en

ts Output1001.root

0 10 20
Events

1−10

1

10

210

310

410

510

610

en
tri
es 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.47 99.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Putting one KCU together - 10 consecutive counters are needed

Fragmented
readout

All good

Stitching together the two KCU entries

41 counter steps
(One needs and idle before
next event)

70810− 70805− 70800− 70795−
Diff [25ns]

1

10

210

310

410

en
tri

es

Just trying to find the offset between
the two KCU’s

After marking the reconstructed events

6

Some fixes with the ADC delays

Lot of missing codes in the ADC distribution:
• This is completely normal, one could update the ADC delays

in the I2C register

After adjustments, there is still one missing ADC code, but
overall looks much better:
• Only drawback here is that the pedestals change and

therefore one has to recalibrate everything again (pedestal,
TOA, TOT thresholds)

7

Calibration runs with TOT - this is to combine ADC-TOTs together

0 1000 2000
Injection [int]

0

500

1000

R
es

po
ns

e

ADC fit: [8.85e+01] + [1.68e+00]x

A1, Ch: 37, Mach: 2
ADC
TOA
TOT

0 1000 2000
Injection [int]

0.1−

0.05−

0

0.05

0.1

R
at

io 0 1000 2000
Injection [int]

0

500

1000

R
es

po
ns

e TOA fit: [7.20e+02] + [3.33e+03]/(x-[4.42e+00])
2TOT fit0: [-8.73e+02] + [2.71e+00]x + [-1.32e-03]x

TOT fit1: [5.30e+02] + [4.71e-02]x

A1, Ch: 37, Mach: 3
ADC
TOA
TOT

0 1000 2000
Injection [int]

0.1−

0.05−

0

0.05

0.1

R
at

io

Even in calibration run, we run with machine gun trigger (multiple samples per hit)

0 1000 2000
Injection [int]

0

500

1000

R
es

po
ns

e

A1, Ch: 37, Mach: 1
ADC
TOA
TOT

0 1000 2000
Injection [int]

0.1−

0.05−

0

0.05

0.1

R
at

io

0 1000 2000
Injection [int]

0

500

1000

R
es

po
ns

e

A1, Ch: 37, Mach: 4
ADC
TOA
TOT

0 1000 2000
Injection [int]

0.1−

0.05−

0

0.05

0.1

R
at

io 0 1000 2000
Injection [int]

0

500

1000

R
es

po
ns

e

A1, Ch: 37, Mach: 5
ADC
TOA
TOT

0 1000 2000
Injection [int]

0.1−

0.05−

0

0.05

0.1

R
at

io

Internal injection of the chip can help identify the ADC/TOA/TOT behavior
MG1

MG2 MG3

MG4 MG5

Different samples:
• MG0-1 - just pedestal before the signal

• MG2 - only ADC fires, it goes up to saturation

• MG3:

• TOA has the slewing in the beginning

• TOT has two regions:

• < 512 - more quadratic function than linear

• > 512 - very stable linear function

After the signal samples

8

Position resolution

9

Some very early resolution figures

These are just teaser plots, the analysis is still ongoing and we are working on combining the TOT into the analysis

10

Not done yet, full signal reconstruction

Starting to reconstruct the full signal:
Tried Semi Gaussian, but looks like the crystal ball function is
more stable

Train the fitting on ADC only (left)
then once the ADC is saturating

Still adding TOA and TOT into the
mix

