

Kinematic Fitting for Inclusive DIS reconstruction

S. Maple

Inclusive NC DIS Kinematics

- DIS kinematics can be reconstructed from two measured quantities $\rightarrow \vec{D} = \{E_e, \theta_e, \delta_h, p_{t,h}\}$
 - Where δ_h is $E p_z$ sum of all particles in the Hadronic Final State: $\Sigma E_i(1 \cos \theta_i)$
 - \mathbf{P}_{th} is the transverse momentum of the HFS
- Resolution of conventional reconstruction methods depend on:
 - Event x-Q²
 - Detector acceptance and resolution effects
 - Size of radiative processes

Electron method	JB method	e-Σ method	Double Angle method
$Q^2 = 2E_{0}E'_e(1+\cos\theta_e)$	$y = \frac{\delta_h}{2E_{\rm G}}$	$Q_{e\Sigma}^2 = Q_e^2 \left y_{\Sigma} = \frac{\delta_h}{\delta_h + \delta_e} \right $	$y_{DA} = rac{lpha_h}{lpha_h + lpha_e} \left \begin{array}{c} lpha_{e/h} = an rac{ heta_{e/h}}{2} \end{array} \right $
$y = 1 - \frac{E'_e}{2E_{\mathbf{G}}}(1 - \cos\theta_e)$	$Q^2 = \frac{p_{t,h}^2}{1-y}$	$x_{e\Sigma} = \frac{Q_{\Sigma}^2}{sy_{\Sigma}} \left Q_{\Sigma}^2 = \frac{p_{t,e}^2}{1 - y_{\Sigma}} \right $	$Q_{DA}^{2} = \frac{4E_{e}^{2}}{\alpha_{e}(\alpha_{e} + \alpha_{h})} \qquad $

Inclusive NC DIS Kinematics with QED radiation

- Presence of QED radiation changes event kinematics
 → Errors in reconstruction when only using two measured quantities
- FSR not too problematic: typically collinear to scattered electron → measured together in ECAL
- ISR more difficult to account for: reduces electron beam energy, radiated photon typically disappears down beampipe

Kinematic Fitting for DIS

- Only <u>need</u> 2 quantities to obtain x, y, Q²
- Using measured quantities $\vec{D} = \{E_e, \theta_e, \delta_h, p_{t,h}\}$ a kinematic fit can extract additional information: $\vec{\lambda} = \{x, y, E_v\}$ E_v is energy of an ISR photon
- For kinematic fit, can use a likelihood function based on knowledge of the detector resolutions:

Likelihood

 $P(\overrightarrow{D}|\overrightarrow{\lambda}) \propto \frac{1}{\sqrt{2\pi\sigma_E}} e^{-\frac{(E_e - E_e^{\lambda})^2}{2\sigma_E^2}} \frac{1}{\sqrt{2\pi\sigma_\theta}} e^{-\frac{(\theta_e - \theta_e^{\lambda})^2}{2\sigma_\theta^2}} \frac{1}{\sqrt{2\pi\sigma_{\delta_h}}} e^{-\frac{(\delta_h - \delta_h^{\lambda})^2}{2\sigma_{\delta_h}^2}} \frac{1}{\sqrt{2\pi\sigma_{P_{T,h}}}} e^{-\frac{(P_{T,h} - P_{T,h}^{\lambda})^2}{2\sigma_{P_{T,h}}^2}}$

• Note: above quantities taken to be uncorrelated \rightarrow Correlations between E_e , θ_e and δ_h , $p_{t,h}$ will later need to be taken into account

Kinematic Fitting for DIS – A Bayesian Approach

A Bayesian method can be applied in which basic features of the DIS cross section are encoded as a **prior**:

> Prior $P_o(\vec{\lambda}) = \frac{1 + (1 - y)^2}{x^3 u^2} \frac{[1 + (1 - E_{\gamma}/A)^2]}{E_{\gamma}/A}$

- Use "Bayesian analysis toolkit" to calculate most probable values of set $\vec{\lambda}$ given measured quantities $\vec{\mathbf{D}}$
 - Values for x, y, E, taken from global mode

Smeared EIC pseudodata

- EIC DIS events generated with Djangoh
 - 18x275, Q²>1
- Smear by estimated resolutions
- $\sigma(\theta_e) = 0.1 \text{mrad}$
- σ(E_e) / E = 11% /sqrt(E) ⊕
 2%
- $\sigma(\delta_h) / \delta_h = 25\%$

Smeared EIC pseudodata (No ISR)

Smearing resolutions used as input for KF

$$P(\overrightarrow{D}|\overrightarrow{\lambda}) = \frac{1}{\sqrt{2\pi}\sigma_E} \exp{-\frac{(E_e - E_e^{\lambda})^2}{2\sigma_E^2}} \times \frac{1}{\sqrt{2\pi}\sigma_\theta} \exp{-\frac{(\theta_e - \theta_e^{\lambda})^2}{2\sigma_\theta^2}} \times \frac{1}{\sqrt{2\pi}\sigma_{\delta_h}} \exp{-\frac{(\delta_h - \delta_h^{\lambda})^2}{2\sigma_{\delta_h}^2}} \times \frac{1}{\sqrt{2\pi}\sigma_{p_t^h}} \exp{-\frac{(p_t^h - p_t^{h\lambda})^2}{2\sigma_{p_t^h}^2}}.$$

Stick to using prior 1 from <u>https://arxiv.org/abs/2206.04897</u>

$$P_0(\vec{\lambda}) = \frac{1 + (1 - y)^2}{x^3 y^2} \frac{1 + (1 - E_\gamma/E_0)^2}{E_\gamma/E_0}$$

- Compare y resolutions:
 - KF method meets or exceeds conventional

- Compare resolutions: no ISR to with ISR on
- "Realistic" $\boldsymbol{\Sigma}_{_{tot}}$ cut of 31 GeV applied to remove high energy ISR

Ø 6

- Some, but not big, difference between observed resolutions
- Even for the electron method!

Smeared EIC pseudodata (W/ ISR)

- Compare true and measured ISR energy distributions
 - Distribution well reproduced for higher E_v
 - Ratio within 30% for $E_v > 3 \text{ GeV}$
 - Within 10% for $E_v > 4 \text{ GeV}$
- Reasonable resolution

Fully Simulated ePIC pseudodata (No ISR)

- $\sigma_E = 0.055 \cdot p \oplus 0.45 \text{ in GeV}$ $\sigma_\theta = 72/p_t \oplus 2.8 \text{ in mrad}$ $\sigma_{\delta_h} = 0.25 \cdot \delta_h \text{ in GeV}$ $\sigma_{p_t^h} = 0.25 \cdot p_t^h \text{ in GeV}.$
 - Parametrised ePIC full sim resolutions
 - Pythia8 NCDIS
 - Craterlake 23.12.0
 - Q² > 100 GeV²
 - Ele from tracking

00

Fully Simulated ePIC pseudodata (No ISR)

- KF gives comparable y resolution to electron method at high y
- Loses at low y to DA method

- Correlations in HFS variables mostly due to energy fluctuations in calorimeters
 - Introduce extra term that reduces likelihood if p_t is overestimated and δ underestimated or vice versa:

$$P(\overrightarrow{D}|\overrightarrow{\lambda})_{corr} = P(\overrightarrow{D}|\overrightarrow{\lambda})_{uncorr} \frac{1}{\sqrt{2\pi}\sigma_{corr}} \cdot \exp{-\frac{(c-c^{\lambda})^2}{2\sigma_{corr}^2}}$$
$$c = \frac{\delta_{h,reco} - \delta_{h,true}}{\delta_{h,true}} - \frac{p_{t,reco}^h - p_{t,true}^h}{p_{t,true}^h}$$
$$- \text{Correlation width } \sigma_{corr} \sim 8\%$$

Fully Simulated ePIC pseudodata (No ISR) – HFS Correlation

- Performance of KF recovered at low y!
 - Not yet perfect → but performance comparable to DA method achieved at low y, while maintaining electron method performance at high y
- Further improvements in likelihood possible for HFS resolutions and correlation parametrisations

Summary

- Conventional reconstruction methods do not fully exploit information measured in NC events → methods such as kinematic fitting (or DNNs) use all measured quantities simultaneously to give a best estimate of the kinematics
- Kinematic fitting method explored using an informative prior based on features of DIS and bremsstrahlung cross sections:
 - In ideal case (smeared uncorrelated) the KF method matches or exceeds the performance of conventional methods
 - If correlations between HFS quantities are included, as in full ePIC detector simulations, the DA method may exceed the basic (uncorrelated) KF
- Extending the KF method to account for correlations in the HFS recovers this performance \rightarrow delivers y resolution comparable to best method for each y bin
- Can identify ISR with good efficiency and resolution for E_v greater than a few GeV
 - Possibility to extend measurements down to lower Q², or add to an F₁ extraction

H1 Resolution on y

No Correlations

H1 Resolution on Q^2

No Correlations

H1 Resolution on x

No Correlations

H1 ISR reconstruction

H1 Data and MC (ISR On)

- KF reconstruction is applied with a likelihood function constructed from the following resolutions:
 - $\sigma(\theta_e) = 4mrad$
 - $\sigma(E_{e}) / E = 11\% / sqrt(E) \oplus 1\%$
 - $\sigma(\delta_{h}) / \delta_{h} = 13.5\%$
 - $\sigma(p_{_{T,h}}) / p_{_{T,h}} = 54\% / sqrt(p_{_{T,h}}) \oplus 4\%$
- No correlation term included for H1 studies
- Good agreement for pulls from data and Djangoh

$$g = \frac{D_{i,fitted} - D_{i,reco}}{RMS_{MC}}$$

@0

H1 Data and MC (ISR On)

 Good agreement for E_y prediction by data and MC (Djangoh)

H1 Data and MC (ISR On)

Why identify ISR?

- ISR lowers the electron beam energy
 - Scattered electrons in low Q² events don't enter main detector
 - \rightarrow lower energy electrons are scattered at larger angles that may be within the detector acceptance
 - \rightarrow kinematic reach extended

Truth Smearing correlations

