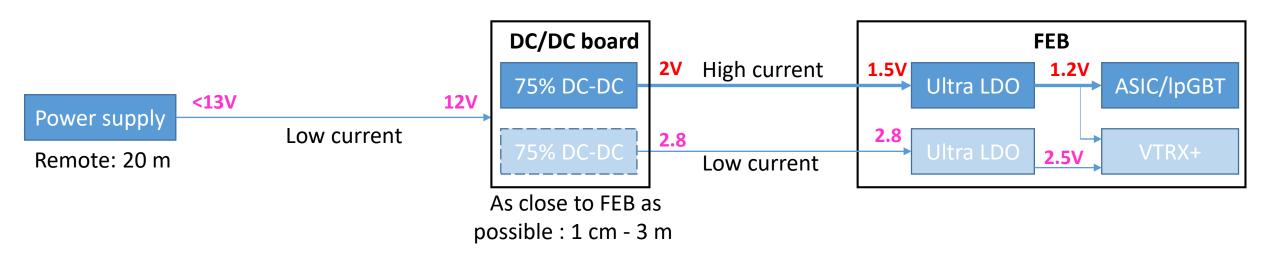


EIC Project – MPGD DSC Highlights from Readout electronics

I. Mandjavidze Irfu, CEA Saclay

8 November 2024

Caution


- Several evolutions since Tracker and eDAQ TDRs
 - → Generalization of VTRX+ use
 - → Opportunity of IpGBT use
- MPGD groups evaluate impact of these evolutions
 - → A dedicated electronics meeting planed beginning of December
- Information provided in this document is based on the following assumptions
 - → All MPGD FEBs are 256-channel units
 - 4 Salsa ASICs per FEB
 - → FEB electrical-optical interface is VTRX+
 - → IpGBT use is considered
 - Low impact on power consumption
 - Does not change number of optical cable assemblies per FEB
 - → FEBs are equipped with linear low dropout voltage regulators (LDO)
 - → Magnetic field tolerant (bulky) DC/DC voltage regulators are placed somewhere as close to FEBs as possible
 - Place yet to be determined depending on DC/DC board design and dimensions
- Reminder: there are 640 FEBs
 - → 128 for CyMBaL with electron and hadron side access
 - → 128 for µRWell-ECT with electron and hadron side access
 - → 384 for µRWell-BOT
 - → Common design with form-factor adaptation per detector type

Low Voltage - How many cables coming from MPGDs?

A 256-channel FEB board needs high current 1.5V power and low current power > 2.8V

- Option 1: DC/DC boards within the vicinity of detector modules
 - → Low current 10-12 volts delivered to detector module
 - → Cable harness with two power cables and two sense wires
 - Alpha Wire 2424C : commercial harness including shield and coating : Ø = 6 mm
- Option 2: DC/DC boards outside the detector modules
 - → DC/DC board input cable harness : same as in option 1
 - → FEB input cable harness includes a pair of cables for high current and a pair of cables for low current
 - Harness diameter including shield and coating depends on the FEB DC/DC distance
 - Ø of commercial products : from 4.6 mm @ 30 cm distance to 6 mm @ 2m distance

DC/DC (and LDO) component count

- MPGDs strongly count on collaboration efforts to reuse ePIC development or to adapt it per detector type
- So far 2 CERN components are considered: bPOL12 and bPOL48
- bPOL12 option : 12V input 4A current
 - → 2 components per FEB
 - → 640 FEBs : 1400 units including prototyping and quality assurance
- bPOL48 option : 48V input 8A current
 - → 1 component per FEB
 - → 640 FEBs : 750 units including prototyping and quality assurance
- Reminder: linear regulators need to be accounted if radiation hardness is of concern
 - → Understand if CERN linPOL12 can be available for VTRX+ 2.5V powering
 - Up to 12V input 25-80 mA output
 - 1 or 2 per FEB
 - → Understand if CMS HgCAL LDO can be available for Salsa, lpGBT and VTRX+ 1.2V powering
 - Up to 2V input 3A current
 - 2 or 4 per FEB

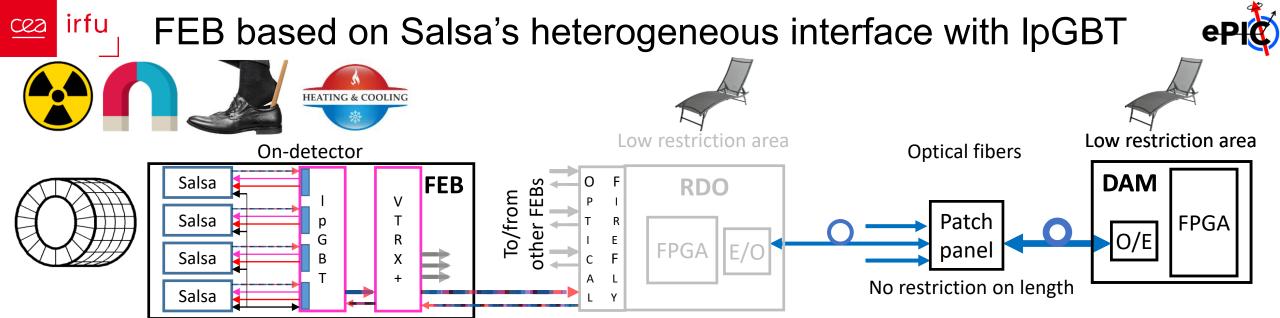
Cooling estimate

- RDO: irrelevant
 - → Either inexistent
 - → Or can be placed anywhere in low restriction area due to FEB RDO optical interface
- 256-channel FEB: 8.5 W with 25% safety margin
 - → Raw power budget with minimal margin : ~6.8 W
 - → Does not include DC/DC board contribution
 - Design under study within the collaboration place to be identified
- Heat stability
 - → Usual slow increase with electronics aging : difficult to estimate but tolerated by low power supply margins
 - → Radiation damage : low influence
 - → Temperature : TBD will be known after measurements on Salsa2 prototype
- Temperature
 - → Operating temperature : no particular constraints within a reasonable ranges : 20-35°C can be considered as baseline
 - → Stability: ±2°C
- Cooling : TBD
 - → Study needs to be initiated

Readout / Data - How many cables coming from MPGDs?

- There is single MPO parallel-optic cable per FEB
 - → Whether IpGBT is used or not
- Our approach is to contain VTRX+ pigtail within the FEBs
 - → Securing fragile part
- Commercial optical fibers between intermediate patch panels
 - → Plenty of choice : will be compatible with the majority of ePIC subdetectors

Short pigtail / on board


COTS MPO fibers of adapted length between patch panels

Short pigtail / on board

Backup

- 256-channel FEB
 - → lpGBT provides a bidirectional interface between 4 Salsas and remote backend FPGA (on RDO or DAM)
 - Clock, fast synchronous commands, asynchronous slow control, physics and calibration data, monitoring
 - → VTRX+ is used with only one TX line
 - → All ASICs are radiation hard
- RDO or DAM: common hardware with FireFly transceivers from Samtec
 - → Placed anywhere in user friendly area
 - No particular restrictions on power consumption, cooling infrastructure, radiation, magnetic field

160K-ch MPGD readout configurations and component count

FEB with direct Salsa-VTRX+ interface

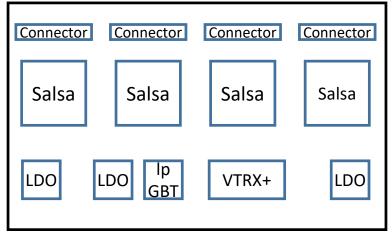
Low density 1 Gb/s grade

FEB with lpGBT-VTRX+ interface

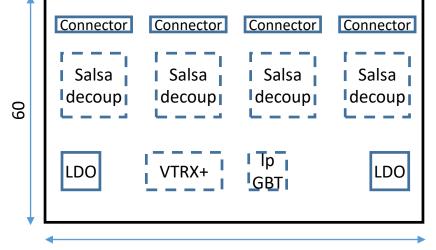
FEB with direct DAM interface

High density 10 Gb/s grade No RDOs to design, produce, install, debug and maintain 4 times more 12-lane FF pairs

2 times more DAMs



256-channel lpGBT-based FEB for CyMBaL : dimensions



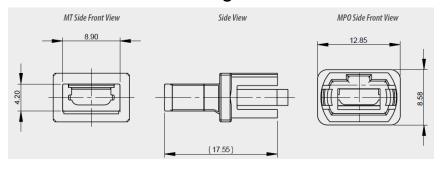
- Assuming 16 x 16 ball 1 mm pitch BGA package for Salsa
- Low profile 40-pin connectors for input signals over micro-coaxial cables
- Active components on both sides of the board
- Length and width give an idea
- Height of the board
 - → Need to accommodate cooling
 - → Need to include mechanical fixture for VTRX+ connector
 - The fragile optical pigtail to be secured within the board
- On-board linear low dropout regulators
- Radiation-hard magnetic field tolerant DC/DC converters
 - → On a companion board
 - → Count on common collaboration efforts
 - Type, surface including air core, height, shielding, cooling

Bottom layer

FEB height: ~10 mm

Protect fragile VTRX+ and its pigtail by containing it within the FEB

Short pigtail / on board


Fibers of adapted length between patch panels

Short pigtail / on board

- → Common practice for commercial FireFly components in industry and VTRX predecessor in HEP community
- → Can limit pigtail length options to very few if not to 1 value : as small as farthest placement from front panel
 - Potential to have a common pool of VTRX+ components for all subsystems
- → Easier maintenance

• MT-MPO low-profile adapter from Senko: 7P5-SM-1

→ 8.6 mm height

VTRX example

FireFly example

256-channel lpGBT-based FEB: power

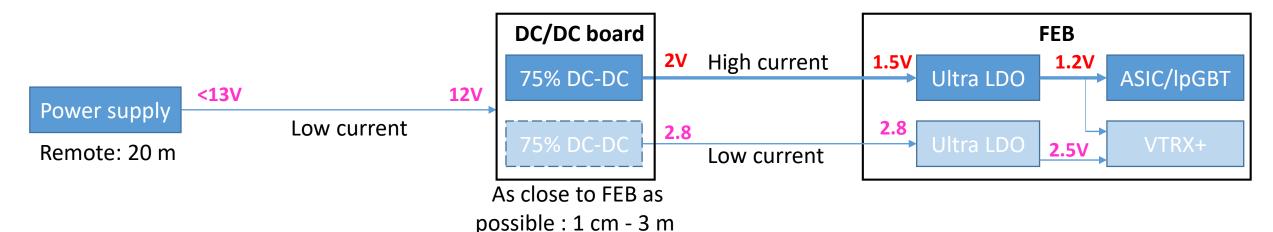
Raw power budget with minimal margin: ~6.8 W

- \rightarrow 27 mW / ch
- \rightarrow 1.5V 6.7 W
- \rightarrow 2.8V 0.2W

Assume 8.5 W for safety: 25% extra

- \rightarrow 33 mW / ch
- \rightarrow 1.5 V 5.6 A
- \rightarrow 2.8 V 90 mA
- Where to place DC/DC converters?

FEB components and their power consumption


а	Component	Vin V	Current mA	Power mW	Comment
	Salsa 1	1.2	1 000	1 200	15 ma\4/ah
	Salsa 2		1 000	1 200	15 mW/ch
	LDO Salsa 1-2	1.5	2 000	600	Can use 2 LDOs to avoid hotspot
	Salsa 3	1.2	1 000	1 200	15 m) W / oh
	Salsa 4	1.2	1 000	1 200	15 mW/ch
	LDO Salsa 3-4	1.5	2 000	600	Can use 2 LDOs to avoid hotspot
	lpGBT	1.2	420	500	Probably 25% overestimated
	LDO lpGBT/VTRX+	1.5	440	130	
	VTRX+	1.2	20	25	
		2.5	70	175	
	LDO VTRX+	2.8	70	20	

FEB power distribution

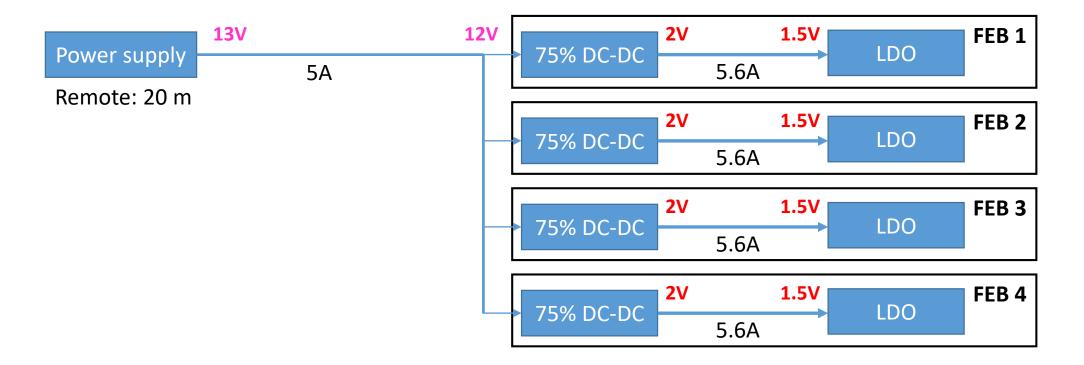
- DC/DC-based LV distribution: to be magnetic field tolerant
 - → Remote power supply distributes 12V with a low voltage drop over ~20 m cables
 - Say less than 1V
 - → Low cross-section power cables
 - The lower the drop the lower the power dissipation in cables but the large is their cross-section

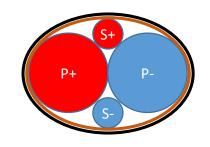
- DC/DC regulators
 - → Might be bulky and a source of EMI
 - Space + extra material for shielding
 - → Distribute high current for 1.2V power
 - Should be close to FEBs.
 - Avoid significant power drop and power dissipation in cables
 - Avoid pickup noise and ground-loops

LV cables from power supply to DC/DC regulators

Assumptions:

- → Remote LV power supply 20 m away
- → 1V voltage from between LVPS and DC/DC regulators
 - 13V LVPS output voltage for 12V DC/DC input
- → 75% DC/DC efficiency
 - 1.2 A over LVPS cables


- LVPS power: 15 W / FEB
 - → 60 mW / channel
 - Remember: 15 mW / channel for Salsa!
 - → Power dissipation (loss) over LVPS cables : 1.2 W
- LVPS cables cross-section 0.8 mm² or 18 AWG
 - → Cable harness with two power cables and two sense wires
 - \rightarrow Alpha Wire 2424C : commercial harness including shield and coating : $\emptyset = 6$ mm
- Reminder: there are 160 CyMBaL FEBs



A power harness per CyMBaL detector module : 4 FEBs

- Reasonable assumption for LVPS power cable cross-section: 12 AWG or 3.3 mm²
 - → Cable harness with two power cables and two 0.5 mm² sense wires
 - \rightarrow Harness Ø = 4.5 mm including shield and coating
- Reminder: 32 LV power harnesses for 32 CyMBaL detector modules

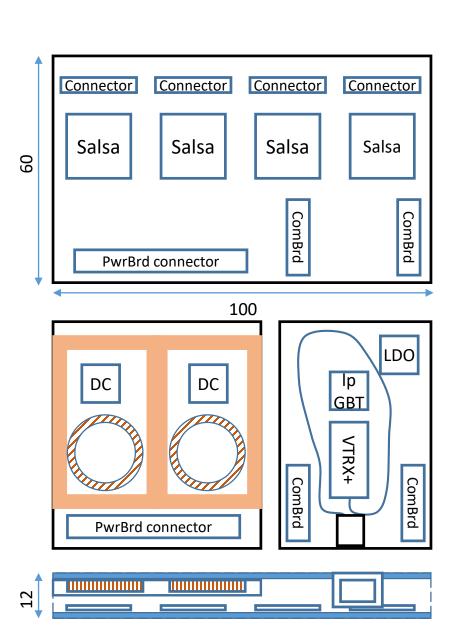
LV cables from DC/DC regulators to LDO regulators

- Assume 0.5V voltage from between DC/DC and LDO regulators
 - → Reminder : no remote sense regulation
 - → 2V DC/DC output voltage for 1.5V LDO input
 - → 2.8W power dissipation (loss)

12V	75% DC-DC	2V		1.5V	Ultra LDO	1.2V
1.2A	73% DC-DC		5.6A		Ollia LDO	
	As close to FEB	as	3.07			
ро	ssible : 1 cm -	3 m				

Cable cross-section vs DC/DC-LDO distance

	DC/DC-LDO Distance	Cross section		Harness + 2.5V cabs	
	cm	mm ²	AWG	Ø mm	Alpha Wire
	30	0.1	26	4.6	3464C
!	50	0.2	24	5	6328
	100	0.4	20	5.4	2414C
	200	0.8	18	6	2424C
	300	1.2	16		


- Reminder: there are 640 MPGD FEBs with tailored power cable Assemblies
- If possible, having DC/DC board next to FEB is preferred

FEB organization?

- Understand if a daughter card hosting IpGBT and VTRX+ can suite all MPGDs
 - → Placing lpGBT on FEB makes it high-density high-speed grade PCB
 - 10 Gbit/s link speed
 - 0.5 mm pitch 289-ball (17x17) BGA
 - \rightarrow Pros
 - Production of a large number communication cards common to MPGDs
 - Form-factor adapted low complexity "cheap" FEBs
 - → Cons
 - More types of PCBs to produce and maintain
- Understand if a DC/DC power mezzanine can fit all MPGDs
 - → Pros
 - Avoids LV cables, ground loops, improves regulation
 - → Cons
 - Extra material due to air core and shield

