

FPC mounting & bonding (spTAB)

James Glover, Eve Tse

ePIC SVT WP3: Electrical Interfaces Meeting

Thu, 13th February 2025

Prototype to PCB mounting (1)

HSD4

1000.00µ

- Following on from bond trials (reported here).
- Mounting and alignment of FPC to PCB.
- Considered adhesives to help hold FPC to PCB.
 - Opted against glue under the FPC, to minimise height offset and prevent glue squeezing out to bond areas.
 - Opted for a <u>UV-cure glue</u> (have familiarity from ATLAS), can be placed on FPC edge and cured dot-by-dot.
 - Used a Kapton coated weight to hold FPC while applying glue.

RMINGHAM

ePIC SVT WP3: Electrical Interfaces Meeting

SCTRL1

SCTRI 4

Prototype to PCB mounting (2)

- Additional solder/probe pads on the Power/data IN side of the FPC made holding FPC with the weight straightforward.
 - Applied the glues dots on the left before removing weight, additional dots prevent FPC from lifting at the edge (cotton swab used to ensure FPC was flat during curing).
 - There was limited locations for the weight on the S/C OUT side of the FPC.
 - Found it harder to keep this side flat.

Power

HSD4

ePIC SVT WP3: Electrical Interfaces Meeting

Prototype to PCB mounting (2)

HSD4

- Additional solder/probe pads on the Power/data
 IN side of the FPC made holding FPC with the weight straightforward.
 - Applied the glues dots on the left before removing weight, additional dots prevent FPC from lifting at the edge (cotton swab used to ensure FPC was flat during curing).
- There was limited locations for the weight on the S/C OUT side of the FPC.
 - Found it harder to keep this side flat.

SCTRL1

MINGHAM

Power

ePIC SVT WP3: Electrical Interfaces Meeting

4

Prototype to PCB mounting (2)

- Additional solder/probe pads on the Power/data
 IN side of the FPC made holding FPC with the weight straightforward.
 - Applied the glues dots on the left before removing weight, additional dots prevent FPC from lifting at the edge (cotton swab used to ensure FPC was flat during curing).
- There was limited locations for the weight on the S/C OUT side of the FPC.
 - Found it harder to keep this side flat.

Power

HSD4

SCTRL1

SCTRI 4

Prototype to PCB alignment

For the eagle eyed!

BIRMINGHAM

For the eagle eyed!

- The differential lines don't line up!
- We mounted the FPC up-side-down!

PCB differential lines FPC differential lines

UNIVERSITY^{of} BIRMINGHAM

Actual connections

Only interested in the SCTRL1, SCTRL2, SCTRL3 (+&-) lines. (that run the full length of the FPC and are available on the S/C OUT PCB).

Power/data IN	FPC	S/C OUT
SCTRL1(+)	GND	SCTRL3(+&-)
SCTRL1(-)	HSD1(-)	Not connected
SCTRL2(+)	GND	SCTRL3(+&-)
SCTRL2(-)	SCTRL3(-)	GND
SCTRL3(+)	GND	SCTRL3(+&-)
SCTRL3(-)	SCTRL2(-)	SCTRL1(+)
GND	SCTRL2(+)	SCTRL1(-)
HSD1(-)	SCTRL1(-)	SCTRL2(+)
GND	SCTRL1(+)	SCTRL2(-)

13 Febuary 2025

Prototype to PCB bonding

- Kept to the bond settings found to work well from testing.
- Vertical offset between FPC and PCB seemed much smaller than with the (unglued) test structure.
 - Observing bonds being done appeared to go very smoothly.
 - A couple of foils had noticeable snapped at either end of FPC, seemed minimal.

IRMINGHAM

SCTRL

Visual inspection (1)

- epic
- A detailed visual inspection of the bonds (higher magnification, better lighting and observation angle control) has shown far greater damage to the FPC tracks – esp. S/C OUT side.
- Fully catalogued the damage into a spreadsheet.

Visual inspection (2)

- Most breaks appears at the edge of the PCB's solder mask (this layer is only 20 µm thick).
- Some irregular kinks in the foil are observed.
- More than 60% of the S/C
 OUT side show some damage.
 - May still have continuity, but not ideal for HS data Tx.
 - Due to trouble keeping FPC flat at this end?
 - Only ~25% on the Power/data IN side.

100.00µm

NIVERSITY^{of} IRMINGHAM

Summary

- Need to double-check FPC orientation prior to mounting.
 - Check all differential traces line-up.
 - Make sure termination resistors are removed from FPC.
 - Cut-off solder/probe pads prior to mounting.
 - Need to look at options for holding FPC without this extension.
- Bonding of FPC tracks to PCB pads seems to have good welds.
- Height difference between FPC tracks and PCB pads seems to be at a limit.
 - Keeping FPC flat to PCB surface is must!
 - Additional space on FPC (Kapton extensions) to hold down during gluing.
 - Minimising surface steps within the bond window might help.
 - PCB redesign with larger window in the solder mask is already done.

Thank you very much!

Any questions?

Additional (support) slides