

EPIC/ToF – Stave Prototyping activities & construction plan

Sushrut Karmarkar, Andy Jung

November 21st, 2024

My very personal view – all up for discussion!

• Stave prototyping activities – happening now!

- Stave pathfinder institute for prototyping is Purdue + FEA baselining
- Module thermal FEAs, activities between Santa Cruz, ORNL, and Purdue
- Thermal testing + limited FEAs at NCKU

• Production of staves

• Parts of raw material via Purdue and production via NCKU, ship back to US

• Module assembly

- Purdue has experience & capacity for wire bonding, limited PED between Purdue & Santa Cruz
- ORNL has also experience and capacity, I do not know details

Stave system tests

- Only Stave thermal testing, see above
- Fully equipped Stave's with mock heaters or somewhat more real heaters
 - ORNL: details to be confirmed
 - Purdue can do system integration, we do have chiller for up to -10 C tests or soon (few weeks) also CO2 test setup that can be used as a facility

• Stave integration

- Likely gantry supported
- My biased view:
 - CMS pixel experience is with high TC grease for workability, screws and a CF clamp for good contact to stave
- TOF assembly
 - Global support tube at Purdue, limited mounting tests at Purdue. Esure all is OK, then ship to BNL
 - O At BNL

Old prototype efforts from R&D 2023/2024

- Need the first stave prototype manufactured at Purdue in Summer 2023 warped upon curing.
- This warpage comes from internal residual stresses from anisotropic coefficient of thermal expansion mismatch between different materials/structures used in the stave.
- We cannot completely remove this internal stress, but we can minimize it by controlling the cure cycle of the composite.

O In this talk –

- 1. Manufacturing simulation results
- 2. Report on raw material procurement all delivered and available at Purdue CMSC.
- 3. Manufacturing plan Dec 2023 deliverables
- 4. Upcoming task list

<u>Nomenclature –</u> miniSTAVE : 300 mm long halfSTAVE : 1.35 m long (half length) fullSTAVE : full length

Cross-section always is the actual designed cross-section

h=0.642 cm

Motivation of problem in curing everything together at manufacturer recommended cure cycle

- Unsymmetric core with vastly different (anisotropic) CTEs/effective CTE
- Thus, results in warpage at recommended curing temperature of 180°C(350°F)
- Up to 300-micron deflection on each side (600 micron effective) on a 300 mm long miniSTAVE prototype *up to 3.6//7.2// mm for a 2.6 m fullSTAVE*

• APEX Carbon Flex Core – PMT material data.

- Cannot use regular "homogenized" properties since the shape of the honeycomb is not "honeycomb"/hexagonal – need to write out the homogenization math using Mechanics of Structure Genome code - upcoming
- **o** Currently modelled explicitly
- Adhesive modelling between two laminates NOT implemented. Modelled as continuous.

CFOAM HTC35 carbon foam alternative to K9

- CFOAM modelled as isotropic homogeneous solid.
- **O** This is okay for now
- O There is huge non-homogeneity in the actual product → need to study the effect of these on thermal performance and see if it is acceptable

Aitor Amatriain, Corrado Gargiulo, Gonzalo Rubio,

Numerical and experimental study of open-cell foams for the characterization of heat exchangers, International Journal of Heat and Mass Transfer, Volume 217,2023,124701,ISSN 0017-9310, https://doi.org/10.1016/j.ijheatmasstransfer.2023.124701.

CFOAM® 35 HTC TYPICAL PROPERTIES (METRIC)

	Test	Units	CFOAM35 HTC
Nominal Density	ISO 12985-2	cc	0.40-0.50
Compressive Strength	ISO 18515	MPa	1.50-1.80
Compressive Modulus	ISO 18512	MPa	100-400
Tensile Strength	ISO 12986-2	MPa	0.9-1.0
Shear Strength	ISO 12986-2	MPa	1.0-4.0
Coefficient of Thermal Expansion	ISO 14420	ppm/°C	1.9-2.1
Thermal Conductivity	ISO 12987	W/m-K	140-180
Maximum Operational Use Temperature	Environment Dependent	°C	400
Electrical Resistance	ISO 11713	milliohm-cm	3-4
Pore Volume	Microscopy	96	> 70%
Mean Pore Size	Microscopy	Microns	1200

What can we do about it ?

- Changing cure cycle such that we get the lowest peak strain in the part
- We achieve the same degree of cure and thus the needed stiffness. Flow behavior of the resin changes (thus wetting/co-curing of the foam and honeycomb core to facesheet)
- This might affect thermal performance (?) don't know how.
- Manufacturing 2 miniSTAVE prototypes in the week of Dec 11th, 2023, with two different cure cycles to see which one will give minimum warpage/deformation.

- 1. miniSTAVE (x2) 1 retained at Purdue, 1 for NCKU 18th December 2023
- 2. halfSTAVE (x1) mid January 2024
- 3. Heat Transfer Analysis miniSTAVE 20th December 2023
- 4. Thermal testing of miniSTAVE late January 2024
- 5. Structural performance FEA and loading tests/validation mid February 2024

NOTES -

I missed the radiation materials meeting on 11th December 2023 – will need to get some of these structural and thermal materials radiation tested.

Who do I talk to for this ? Zhenyu Ye ?

Future work – can potentially move to CFRP tube insert instead of SS or titanium – depending upon thermal performance – we have one such tube and we will evaluate the same with a miniSTAVE prototype

SS304 tube

Upcoming – Heat Transfer Analysis on miniSTAVE,

halfSTAVE, and fullSTAVE

Validation of the heat transfer analysis with testing and comparison to thermal-IR imaging with mock heaters

