Few-body polarimetry using elastic scattering

Nigel Buttimore

Trinity College Dublin Ireland

December 11, 2024

EIC polarimetry working group meeting

ANALYZING POWER for POLARIZED LIGHT IONS

M and Z: mass and charge of ion with magnetic moment μ

 μ : is in units of nuclear magnetons with proton mass m

 $A_{
m N}$: the analyzing power for an incident polarized ion is

2 lm (non-flip) (spin-flip)* / [(non-flip)
2
 + (spin-flip) 2]

non-flip:
$$i+\rho-\frac{t_c}{t}e^{i\,\delta_c-(b_h-b_{em})\,t}$$
 $\frac{m}{\sqrt{-t}}$ spin-flip: $i\,I+R-\frac{t_c}{t}(\frac{\mu}{Z}-\frac{m}{M})\,e^{i\,\delta_c}...$

EM and hadronic equal at $-t_c=rac{4hc~Z~Z'}{137~\sigma_{
m tot}}pprox rac{Z~Z'}{14~\sigma_{
m tot}}~{
m GeV/}c^2$

Over 0.001 < -t < 0.01 Coulomb phase & slope effects: small changes in ρ & R

ANALYZING POWER AT LOW MOMENTUM TRANSFER

The analyzing power for an incident polarized ion is

$$\frac{m}{\sqrt{-t}} A_{N} = \frac{\frac{t_{c}}{t} (\frac{\mu}{Z} - \frac{m}{M} - I) - R + \varrho I}{1 + \varrho^{2} + (t_{c}/t)^{2} - (m^{2}/t)(...)}$$

and the unknown imaginary spin-flip term, I, means that an experiment is required to evaluate I for polarimetry.

At 0.001 < -t < 0.01 denominator spin-flip terms are small

& the analyzing power may be approximated in the following:

FIGURE OF MERIT ANALYZING POWER for POLARIZED LIGHT IONS

 μ : in nuclear magneton units, with proton mass m

 $A_{\rm N}$: analyzing power of polarized ion beam

$$-t_{\rm C} = \frac{4hc~Z~Z'}{137~\sigma_{\rm tot}} \approx \frac{Z~Z'}{14~\sigma_{\rm tot}}~{\rm GeV}/c^2$$

where
$$\frac{A_0}{\sqrt{-t_C}} = \frac{\mu}{Zm} - \frac{1}{M}$$

Time for recoil mass M_R , charge Z', to go distance d: $\frac{dM_R}{c\sqrt{-t_C}}$

Corrections needed for Coulomb phase, hadronic spin-flip and $\rho.$

