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Abstract. The elastic scattering of spin half helium-3 nuclei at small angles can show a sufficiently
large analyzing power to enable the level of helion polarization to be evaluated. As the helion to
a large extent inherits the polarization of its unpaired neutron the asymmetry observed in helion
collisions can be transformed into a measurement of the polarization of its constituent neutron.
Neutron polarimetry therefore relies upon understanding the spin dependence of the electromagnetic
and hadronic interactions in the region of interference where there is an optimal analyzing power.
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INTRODUCTION

The spin polarized neutrons available from a polarized helium-3 beam would be very
suitable for the study of polarized down quarks in variousQCD processes particularly
relating to transversity [1], nucleon spin structure [2], multi Pomeron exchange [3],
gluon distributions [4], and additional dimensions [5]. Measuring the analyzing power in
small angle elastic scattering of hadrons with spin provides an opportunity for evaluating
the level of polarisation of incident helium-3 nuclei (helions) [6] thereby providing an
effective neutron polarimeter [7].

Such a method relies upon an understanding of high energy spin dependence in
diffractive processes [8]. Here, the interference of elastic hadronic and electromagnetic
interactions in a suitable peripheral region enhances the size of the transverse spin asym-
metry sufficiently to offer a tangible polarimeter for high energy helions. Polarimetry has
been studied [7] in an approximation which emphasises the rôle of the neutron and the
Glauber corrections that are required for a light nucleus such as helium-3.

The approach of this article assumes that the helion is a spin half fermion and ex-
pects that the polarization of the neutron may be inferred from that of the helion via
an understanding of compositeness. Outside the interference domain of collision angles,
hadronic analyzing powers tend to zero at high energies but the large anomalous mag-
netic moment of the helion induces a substantial peak in the asymmetry at interference.

The polarized proton programme atRHIC [9] has provided information on the energy
dependence [10] of hadronic helicity flip amplitudes for protons scattering off hydrogen
and carbon nuclei, particularly for single spin flip amplitudes [11]. Helium-4 targets
have also been suggested for proton polarimetry [12]. Here the task relates to a study of
the asymmetry induced by the low momentum transfer scattering of helium-3 collisions
off proton, carbon or helion targets.



SINGLE SPIN ASYMMETRY

We discuss polarimetry for a beam of spin half helium-3 nuclei and draw comparisons
with the similar proton case [13]. The normal single spin asymmetryAN of a spin
half hadron of massm, chargeZe and magnetic momentµ nuclear magnetons (based
upon the proton massmp) scattering elastically off a chargeZ′e ion of any spin has as
numerator (β being the incident laboratory velocity)
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that is, interference of helicity nonflip and flip amplitudes each with electromagnetic
and hadronic elements. The total hadronic cross section of the particles of chargeZe
andZ′e is σtot . An explanation of the factor (µ/mp − Z/m) appears in the next section.
Including the spin averaged denominator, the asymmetry is approximately given by
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where contributions from the following have been neglected for simplicity, namely,
hadronic helicity flip amplitudes, the nonflip real part at high energy, a Coulomb-
Bethe phase shift, hadronic diffractive and form factort dependences. Observe also
that the ratio of purely electromagnetic flip to nonflip amplitudes is about 3%, that
is, approximately 0.1% for the squared amplitudes that appear in the spin averaged
denominator. Inclusion of such neglected terms has been detailed elsewhere [8]. Given
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the extremum of Eq. 1 occurs atx = 1, that is, att = topt. The transverse asymmetry
thus has an optimum value, either a maximum or minimum depending on its overall
sign, at invariant momentum transfertopt. To incude the possibility of an incident (or
target) antiproton [14], or other hadronic antiparticle, the signs ofZ andZ′ have not been
assumed to be positive in the following expression for an optimum analysing power
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The ratio of the asymmetry extrema for helions withZ = 2 (magnetic momentµh) and
protons withZ = 1 (magnetic momentµp) scattering off the same nucleus with charge
Z′e is
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for high energy polarized helions or protons scattering elastically. The helion proton
mass ratio ismh/mp = 2.99315; the magnetic momentsµp = 2.79285 andµh =−2.1275
of the proton and helion are in nuclear magnetons.



HELION ANOMALOUS MAGNETIC MOMENT

The negative magnetic moment of the helion indicates that the optimum asymmetry
corresponds to a minimum in contrast to the maximum observed in the case of protons.
Given that the total cross section for helion scattering is approximately three times that
for proton collisions, with a small reduction for nuclear shadowing, it may be concluded
that, but for sign, the size of the helion analyzing power is a substantial fraction of the
proton asymmetry seen in the electromagnetic hadronic interference region.

The anomalous magnetic moment factor appearing in Eq. 1, (µ/mp − Z/m), arises
from a study of the electromagnetic current for a fermion of massm, chargeq = Zeand
spin half. The current matrix element with initial and final four momentapµ andp′

µ
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where the electromagnetic form factorsF1(t) and GM(t)/(2m), with metric tensor
diag(1,−1,−1,−1) and invariant momentum transfer variablet = (p′− p)µ(p′− p)µ ,
have static values equal to the charge and magnetic moment of the fermion

F1(0) = q, GM(0)/2m = µ
′ = µ e/2mp (7)

noting here that the magnetic momentµ
′ is normally quoted asµ in nuclear magnetons

involving the massmp of the proton. Another expression for the current usesF1(t) and
F2(t)
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where the Sachs magnetic form factor is expressed asGM(t) = F1(t) + F2(t) so that the
fermion with chargeq = Ze has the anomalous magnetic moment that occurs in Eq. 1
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In the absence of anomaly, the Dirac magnetic moment isq/2m, or Zmp/m magnetons.
For the case of the proton withm= mp andµ = µp , the anomalous magnetic moment
reverts to a form(µ−1) e/2mp involving the nuclear magneton as a factor.

It appears then that helium-3 scattering on, for example, carbon nuclei can provide a
relative helion polarimeter. The inelastic channels for helion carbon collisions require
study as there are many more such processes in contrast with the case of proton carbon
scattering that has been successfully employed [15]. The cross sections for inelastic
helion carbon collisions are not expected, however, to dilute the analyzing power to any
great extent and would appear as a factor in a relative polarimetry measurement.

Calibration of the relative polarimeter could use a polarized helion beam scattering
on a helion jet target and its time reversed process involving a polarized helion jet.
The scattering could also be off a proton jet target with the time reversed process
involving a proton beam and a polarized helion jet target. Non-identical spin half fermion
fermion elastic scattering has been well studied [13] and cross sections [16] and helicity
amplitudes [17] for single photon exchange processes are available.



CONCLUSIONS

Spin dependent collisions involving polarized down quarks are expected to provide
increasingly stringent tests ofQCD. The polarized neutrons embedded in a beam of spin
polarized helium-3 nuclei offer a way of arranging a polarized down quark probe. The
optimal analyzing power for helions scattering elastically off appropriate charged nuclei
in the electromagnetic hadronic interference region of momentum transfer is sufficient
to act as a method of polarimetry for a helion beam. The polarization of the unpaired
neutron, and hence of the constituent down quark, can then be evaluated using techniques
of the kind introduced by Glauber and others.

Absolute calibration of the helion polarimeter requires study of the time reversed
collisions involving a polarized helion jet target, similar in many ways to the proton
case but for the possible complication of a greater number of helion nucleus inelastic
channels. Further theoretical insights may follow from studying the analytic structure
of forward spin dependent amplitudes for helion processes [18], including sum rules in-
volving magnetic moments [19]. A programme utilising polarized helions and neutrons
will hopefully lead to a deeper understanding of diffractive spin dynamics.
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