Community Input Survey Summary

Christina Swinson

A CENTURY OF SERVICE

Outline

- Survey purpose
- Survey Structure
- Summary of responses
 - Demographic
 - Laser Parameters
 - Other Scientific Needs
 - Major Challenges
 - Key Milestones

Survey Purpose

- Assess the needs of the scientific community in relation to high peak power mid-IR laser capabilities.
- Have a good understanding of the needs of the community to drive the future direction of mid-IR (9-11 µm regime) high-power laser development for strong-field research needs.
- Consider 3 main thrusts

Thrust 1: Topics in mid-IR laser research
Thrust 2: Topics in Laser-Plasma Interactions and Laser
Wakefield Acceleration
Thrust 3: Topics in laser-electron beam interaction

Survey Structure

If your research needs are sensitive to the peak power that can be delivered, please indicate the peak power that will satisfy your needs:

Not applicable

	5 Years	Ultimate
< 1TW Peak Power		
1-10 TW Peak Power		
> 10 TW Peak Power		
Other Peak power		

Please explain your requirements if you selected "Other Peak Power" above.

- Combination of multiple choice and text answers
- Try to capture most desirable laser parameters and understand how broad a range of parameters is needed to satisfy the whole community.
- Gain an understanding of priorities to drive laser R&D.

Demographic

How do your present or planned research goals utilize high-power mid-IR wavelength Lasers?

Laser Parameters

NATIONAL LABORATORY

Other pulse structure

> 100 J

A CENTURY OF SERVICE

Other

ARS OF

Test Facility

Laser Parameters

NATIONAL LABORATOR

- Linear polarization
- Circular polarization
- $M^2 < 1.2$
- Controllable contrast
- 2 um wavelength
- Diffraction limited focusing

5 Year

- < 100 um focus
- *a*₀ = 10

Accelerator

Test Facility

- Pulse shaping
- Higher-order modes

Ultimate

Other Needs

Major Challenges

- Increasing repetition rate
- Pushing for higher peak power
- Pushing for shorter pulse length
- Addressing Efficiency
- Increasing Support

Key Milestones

- 500 fs pulses
- a₀ > 1
 - 2 for access to bubble regime in plasma interaction
 - 2 for nonlinear electron beam interaction regime
 - 4 reach ideal blowout regime in plasma interaction
 - 7-10 ion acceleration, accessing relativistic transparency with gas target.

If you have not yet participated ...

You may do so here:

https://surveys.external.bnl.gov/n/ATFScientificNee ds.aspx

Also linked from the conference website and indico agenda page

