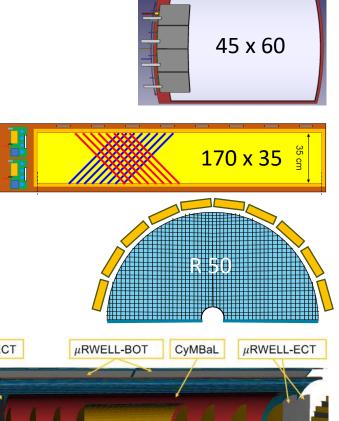


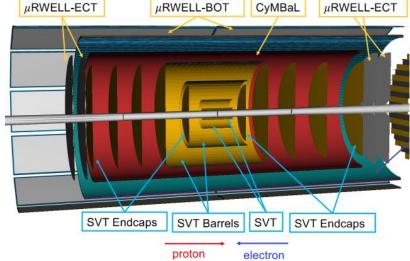
FEBs for ePIC MPGDs Technical and organizational choices

Irakli Mandjavidze

Irfu, CEA Saclay Gif-sur-Yvette, 91191 France

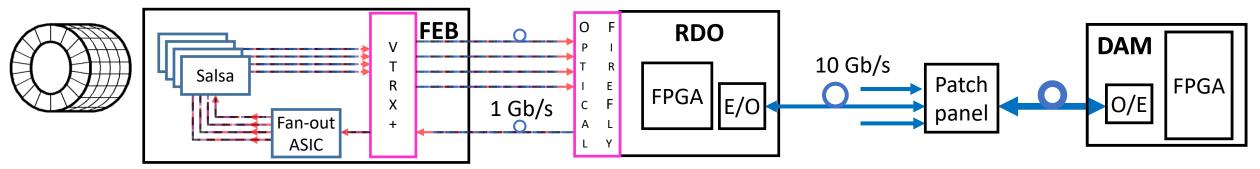
MPGD-DSC general meeting 5/Dec/2024


- Considered readout architecture
- Low voltage powering
- Frontend partitioning
- Space constraints
- Summary


<u>cea</u> irfu

Reminder on MPGD sub-systems and channel counts

- Cylindrical Micromegas Barrel Layer : CyMBaL : ~30k channels
 → 32 tiles of 1024 channels each
- µRWELL Barrel Outer Tracker : µRWell-BOT : ~100k channels
 - \rightarrow 24 modules of 4 096 U-V strips each
- µRWell End Cap Tracker : µRWell-ECT : ~30k channels
 → 8 half-disks of 4 000 X-Y strips each
- ~160k-channel heterogeneous system
 - \rightarrow Micromegas, µRWell, barrel, endcap, curved, planar, circular
- Common approach to acquire data from different types of ePIC MPGDs
 - \rightarrow Use same frontend ASIC
 - Salsa under development
 - \rightarrow Share frontend design between groups
 - Adapt form factor if needed



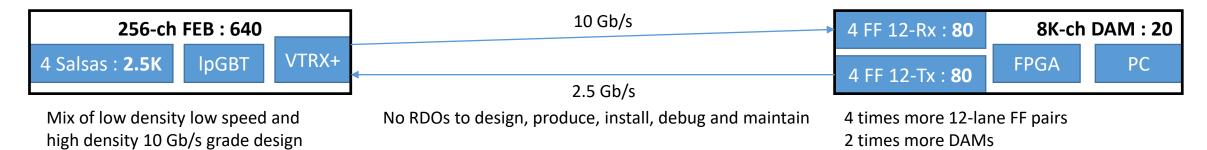
Electron-Ion Collider

irakli.mandjavidze@cea.fr

• Option 1 : FEB-RDO-DAM based on direct Salsa-VTRX+ interface

• Option 2 : FEB-DAM based on IpGBT-Vtrx+ interface

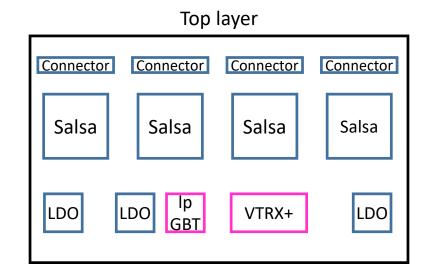
²²² ^{irfu} 160K-ch MPGD readout configurations and component count

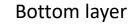


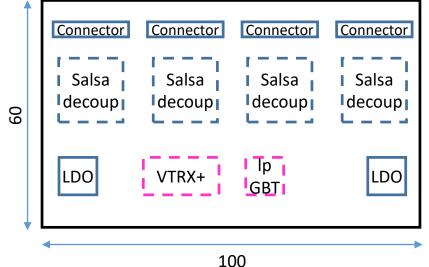
• Option 1 : FEB with direct Salsa-VTRX+ interface

Low density 1 Gb/s grade design

• Option 2 : FEB with direct DAM interface




Power

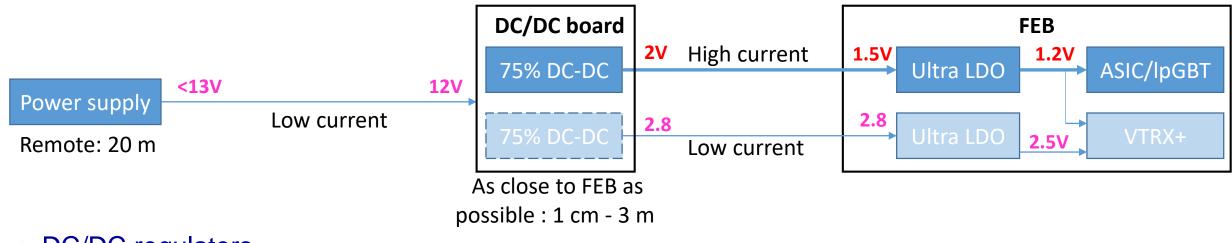

irfu cea 256-channel IpGBT-based FEB for CyMBaL : components

- Assuming 16 x 16 ball 1 mm pitch BGA package for Salsa
- Low profile 40-pin connectors for input signals over micro-coaxial cables
- Active components on both sides of the board
- Length and width give an idea
- Height of the board
 - \rightarrow Need to accommodate cooling
 - \rightarrow Need to include mechanical fixture for VTRX+ connector
 - The fragile optical pigtail to be secured within the board
- On-board linear low dropout regulators
- Radiation-hard magnetic field tolerant DC/DC converters ۲
 - \rightarrow On a companion board
 - \rightarrow Count on common collaboration efforts
 - Type, surface including air core, height, shielding, cooling

256-channel IpGBT-based FEB : power

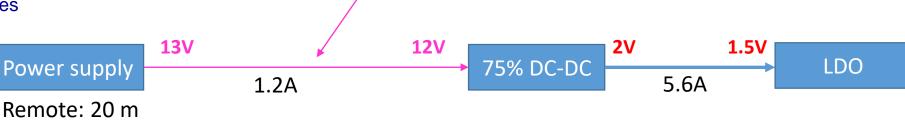
- Raw power budget with minimal margin : ~6.8 W
 - \rightarrow 27 mW / ch
 - \rightarrow 1.5V 6.7 W
 - $\rightarrow 2.8V 0.2W$
- Assume 8.5 W for safety : 25% extra
 - \rightarrow 33 mW / ch
 - \rightarrow 1.5 V 5.6 A
 - \rightarrow 2.8 V 90 mA
- Where to place DC/DC converters ?

FEB components and their power consumption
--


Component	Vin V	Current mA	Power mW	Comment
Salsa 1	1.2	1 000	1 200	1 E m M/ch
Salsa 2		1 000	1 200	15 mW/ch
LDO Salsa 1-2	1.5	2 000	600	Can use 2 LDOs to avoid hotspot
Salsa 3	1.2	1 000	1 200	1 E m M//ch
Salsa 4		1 000	1 200	15 mW/ch
LDO Salsa 3-4	1.5	2 000	600	Can use 2 LDOs to avoid hotspot
IpGBT	1.2	420	500	Probably 25% overestimated
LDO lpGBT/VTRX+	1.5	440	130	
VTRX+	1.2	20	25	
	2.5	70	175	
LDO VTRX+	2.8	70	20	

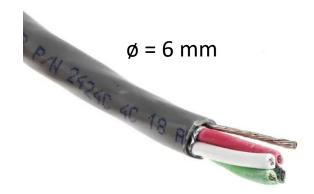
FEB power distribution example Reminder : https://indico.bnl.gov/event/22316/contributions/87363/attachments/52727/90159/240215_IM_MpgdPower.pdf

- DC/DC-based LV distribution: to be magnetic field tolerant
 - \rightarrow Remote power supply distributes 12V with a low voltage drop over ~20 m cables
 - Say less than 1V
 - \rightarrow Low cross-section power cables
 - The lower the drop the lower the power dissipation in cables but the large is their cross-section

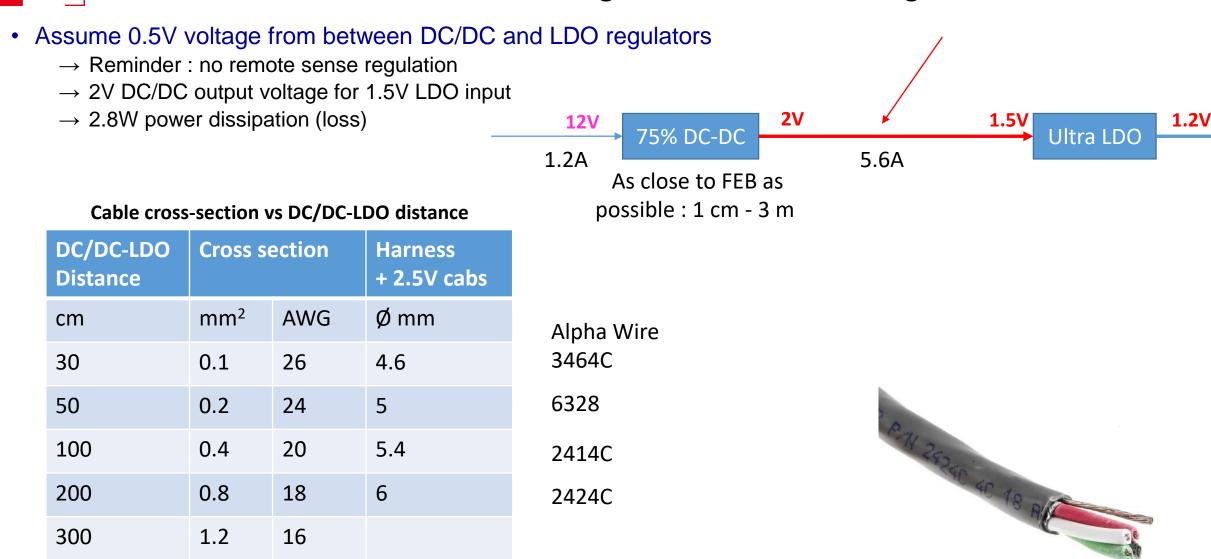

DC/DC regulators

- \rightarrow Might be bulky and a source of EMI
 - Space + extra material for shielding
- \rightarrow Distribute high current for 1.2V power
 - Should be close to FEBs
 - Avoid significant power drop and power dissipation in cables
 - Avoid pickup noise and ground-loops

LV cables from power supply to DC/DC regulators


- Assumptions:
 - \rightarrow Remote LV power supply 20 m away
 - \rightarrow 1V voltage from between LVPS and DC/DC regulators
 - 13V LVPS output voltage for 12V DC/DC input
 - \rightarrow 75% DC/DC efficiency
 - 1.2 A over LVPS cables

- LVPS power : 15 W / FEB
 - \rightarrow 60 mW / channel
 - Remember : 15 mW / channel for Salsa !
 - $\rightarrow\,$ Power dissipation (loss) over LVPS cables : 1.2 W


LVPS cables cross-section 0.8 mm² or 18 AWG

- $\rightarrow\,$ Cable harness with two power cables and two sense wires
- \rightarrow Alpha Wire 2424C : commercial harness including shield and coating : ø = 6 mm
- Reminder : there are 160 CyMBaL FEBs

LV cables from DC/DC regulators to LDO regulators

- Reminder : there are 640 MPGD FEBs with tailored power cable assemblies
- If possible, having DC/DC board next to FEB is preferred

irakli.mandjavidze@cea.fr

cea irfu


Power components

- Studies within the ePIC collaboration to have common approach / solution to power the frontends
 - \rightarrow Magnetic field and mild radiation tolerant
 - \rightarrow Lead by Tim Camarda and Gerard Visser
- CERN power components
 - \rightarrow DC/DC regulators
 - bPOL48
 - bPOL12
 - \rightarrow Linear LDO regulator
 - from CMS : high power for 1.2V Salsa and IpGBT
 - Linear LDO regulator : low power LinPOL12 for 2.5V VTRX+
 - \rightarrow ePIC-wide and personal contacts : confirmation of availability in needed quantities
 - MPGD needs
 - 1 500 DC/DC regulators and possibly LinPOL12
 - 3 000 CMS LDO
- But do we even need radiation tolerant components, can commercial components be used ?
 - \rightarrow e.g. MIC69303 (RT) linear regulator from Microchip
 - \rightarrow The PreTDR figures for radiation are extremely low : 0.4 krad after 10 years
- Magnetic field is a real issue

→ Saclay counts on ePIC-wide developments, final design and validation, on guidance for adaptation to our needs

bPOL12V module prototype with custom coils and shield

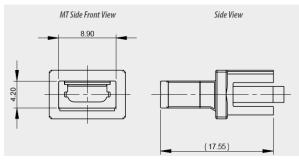
© P. Aspell, CERN; S. Caregari, NSU Taiwan

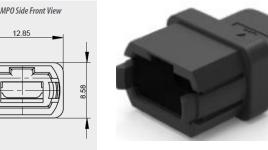
Frontend partitioning

Height : ~10 mm

• Protect fragile VTRX+ and its pigtail by containing it within the FEB

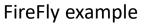
Short pigtail / on board


Fibers of adapted length between patch panels

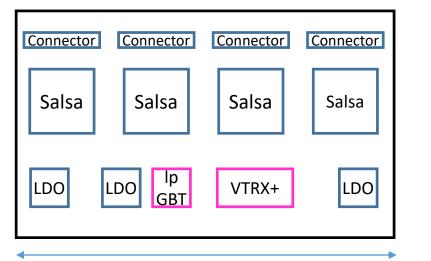

Short pigtail / on board

- → Common practice for commercial FireFly components in industry and VTRX predecessor in HEP community
- → Can limit pigtail length options to very few if not to 1 value : as small as farthest placement from front panel
 - Potential to have a common pool of VTRX+ components for all subsystems
- \rightarrow Easier maintenance

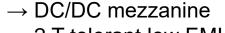
• MT-MPO low-profile adapter from Senko : 7P5-SM-1


 \rightarrow 8.6 mm height

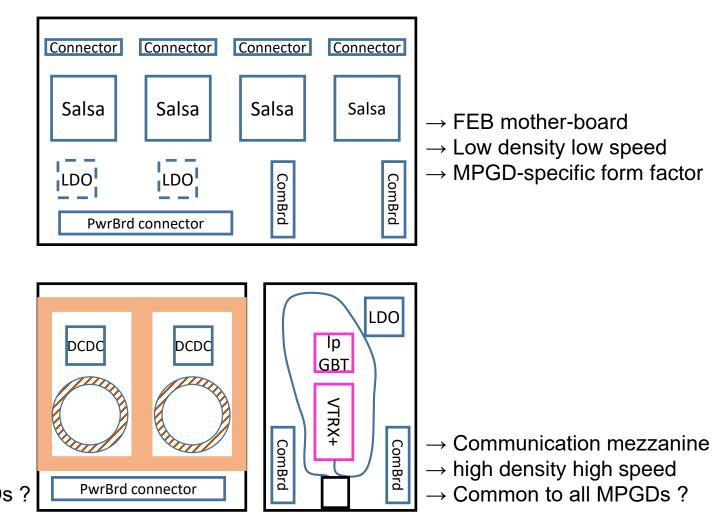
VTRX example



²²² ^{irfu} Illustration of CyMBaL lpGBT-based FEB organization options



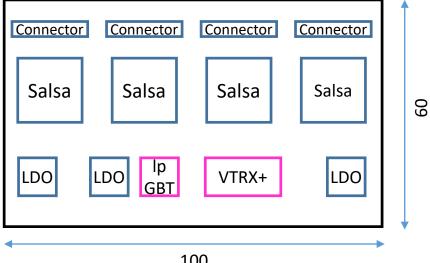
• Single board


100

- \rightarrow Complex high density high speed
- \rightarrow MPGD-specific form factor

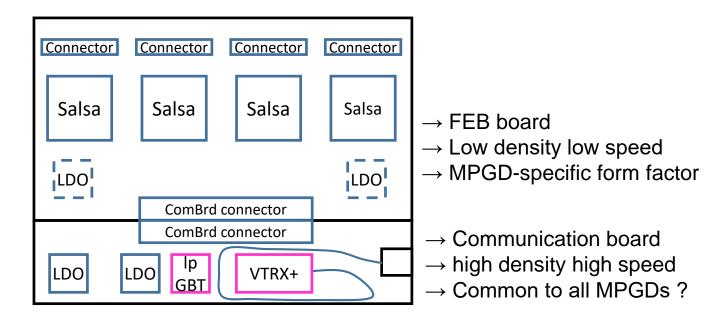
- \rightarrow 2 T tolerant low EMI
- \rightarrow Common to all MPGDs ?

60



Mezzanine approach

irfu Illustration of CyMBaL IpGBT-based FEB organization options cea


Single board

100

- \rightarrow Complex high density high speed
- \rightarrow MPGD-specific form factor
- DC/DC board whereabouts to be studied

Companion board approach

 \rightarrow board-to-board or board-to-cable (flex) connections

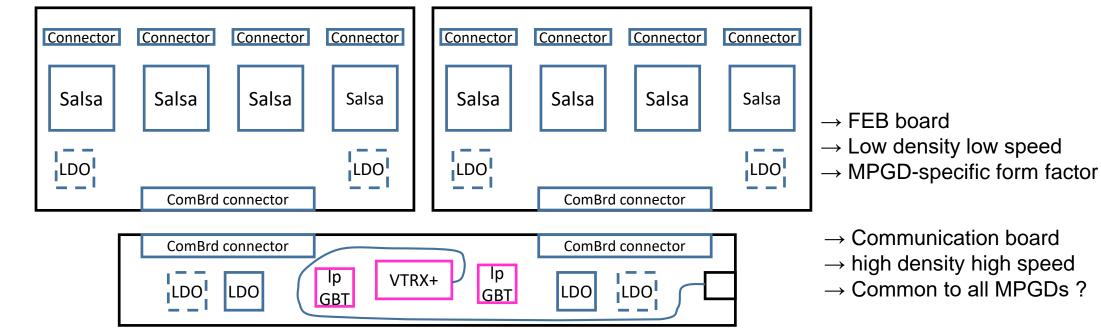
²²² ^{irfu} Instead of summary : what could be done as work sharing?

- Readout architecture
 - $\rightarrow\,$ Choice to be done : 2-stage IpGBT-based or 3-stage RDO-based

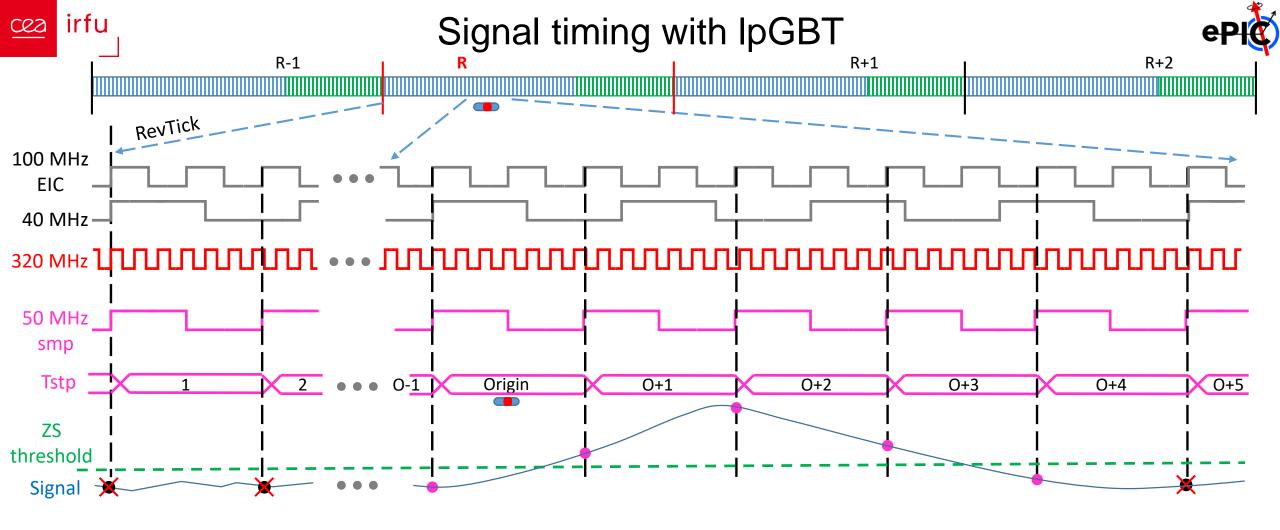
• FEB

- \rightarrow Frontend electronics partitioning based on space constraints
- $\rightarrow\,$ FEB and communication board design
 - Saclay has an expertise
- Low voltage powering
 - $\rightarrow\,$ Common approach for low power distribution
 - \rightarrow DC/DC board design
 - Saclay expects support from groups actively involved in powering studies
 - Adaptation for MPGD
- Colling
 - $\rightarrow\,$ No particular studies have been conducted at Saclay
- Only frontends have been discussed so far but there is much more
 - \rightarrow Backend (hardware), firmware and software adaptation
 - $\rightarrow\,$ Run control, slow control and monitoring
- Consolidate readout specifications mostly concerns Salsa
 - $\rightarrow\,$ Make sure they suit MPGD requirements
 - \rightarrow Make sure envisaged calibration and monitoring means are adequate
 - \rightarrow Timeline...

• Collaboration meeting at Frascati could be a good opportunity to discuss these questions ?



Backup


²²² ^{irfu} Illustration of CyMBaL lpGBT-based FEB organization options

Shared communication board approach

- \rightarrow Short board-to-cable (flex) connections
- Requires less VTRX+ components and fiber optic cables
 - \rightarrow 2 VTRX+ optical outputs used
 - \rightarrow Need to understand if detector curvature permits
- DC/DC board whereabouts to be studied

• Periodic "Sync" command generated when EIC and 40 MHz clocks are in phase

- \rightarrow RevTick in this example
- $\rightarrow\,$ Allows phase alignment and monitoring of clocks within Salsa

• In this example Salsa is programmed to keep one sample before and after threshold crossing

 \rightarrow Salsa data for the signal : FrameCounter, Tstp(O-1) Smp(O-1) Smp(Origin) Smp(O+1) Smp(O+2) Smp(O+3)