INTT various updates

National Central University/RIKEN

Dec 6th, 2024 INTT meeting

Cheng-Wei Shih,

Note: the hit transmission from chip to ROC: 1 hit / 1 bco

Cheng-Wei Shih (NCU/RIKEN)

Chip Occupancy

With HitQA and CloneHit Removal (CloneHit: same FELIX, FELIX_ch, chip_id, chan_id, hit_bco) Count the number of hits of each chip, per hit bco

• The spike at nhits 74: hits been rejected due to the late arrival to the FELIX

- The maximal number of hits of each chip and per hit_bco is 74
- Half-entry chips have similar structures \rightarrow Hit missing happened before FELIX (at chip)
- May not be relevant to the two spikes in the cluster phi size distribution (43 or 46 channels being adjacent)

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

Run 54280, first 3M events

Code can be found in GitHub

INTT_open_time: 50 BCO (I assume, where to confirm?)

Event of interest (EOI)

The very next events of the EOI are very close to EOI in time wise Hypothesis: Hits in FELIX been assembled with INTTheader (INTT_bcofull) and sent out to the down stream. Since FELIX receives new trigger, the previous INTT_bcofull is overwritten. The hit assembly continues, but with the new INTT_bcofull

Can we probably just have a simple "BCOFULL_diff" cut?

nextINTTBCO_thisINTTBCO_interest_narrow nextINTTBCO_thisINTTBCO_interest_narrov 90 ⊟ 360 Entries 30.73 Mean 80 Std Dev 14.2 70 · Plot first made by Hao-Ren 60 <u>|</u> 50 40 30 20 10 50 100 200 250 150 300 nextINTTBCO - thisINTTBCO

```
Cheng-Wei Shih (NCU, Taiwan)
```


Note: the hit transmission from chip to ROC: 1 hit / 1 bco

Cheng-Wei Shih (NCU/RIKEN)

Event bco span

Code in <u>GitHub</u>

Runnumber	run time (min)	nEvent	Rate (Hz)
54279	60.133	5842231	1619.253
54280	60.183	10610255	2938.331

Somehow the distribution event bco is different from what we expected But it seems to be the case, at least, the average trigger rate is matched Somehow run54280 has higher trigger rate than the previous run \rightarrow could possibly by re-tune the scale-down factor

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

GL1BCO is used

Event bco span

INTT BCOFULL (from "INTTEVENTHEADER->get_bco_full()")

Still similar distribution comparing to that of made of GL1BCO It seems that INTT FELIX servers don't deny the coming trigger signals even when the data processing is still ongoing

Cheng-Wei Shih (NCU, Taiwan)

INTT meeting

nextINTTBCO_thisINTTBCO_narrow

Event bco span, same scale

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

Event bco span, same scale

h1_ThisBcoFull_PreviousBcoFull_0_25000

GL1BCO is used

INTT meeting

The distributions look reasonable To have the Poisson distribution with large λ , to trigger rate has to be very low, few hundred Hz Cheng-Wei Shih (NCU, Taiwan)

SPHE

Event bco span (narrow)

run 54280

Have the same dead time, 17 BCO (It may be the default set in the GTM? not due to the busy signal?)

GL1BCO is used

Cheng-Wei Shih (NCU, Taiwan)

Summary

- time is confirmed in some level
 - In run 54280, one chip can have up to 74 hits per event and per hit_bco
 - ROCs, but the time is still spent
- time span
 - corresponded to the previous INTT_bcofull
 - Would it be a severe problem in the p+p data?
- distribution is different from what we expect due to the rather higher collision rate

• The cut-off can be seen in the chip occupancy distributions, the work principle of open

- The half-entry chips have similar structures. Half of hits cannot make it be received by

• The very next events of the event of interest (EOI) are very close to EOI in terms of the

- Hypothesis: the INTT_bcofull is overwritten when the next trigger is received by FELIX while FELIX is still proceeding the hit assembly with the rather late arrival hits

• We can possibly have a INTT_bcofull_diff cut. Some good events might be cut since the

With the check of multiple runs, the distributions of event_bco_span look reasonable

Back up

Run description - 54280

- Spike appears at each end of MBD
- The mini-bias definition is not yet available (as far as I know)
- Live trigger available to constraint the MBD vertex Z

channel	Name	enabled	Scaledown	Raw	Live <\div>	Scaled	Live (%)
	Clock	yes	93810	33836274325	33663041357	358838	99.5
	ZDC South	yes	off	102829214	102308816	0	99.5
	ZDC North	yes	off	98430768	95872319	0	97.4
	ZDC Coincidence	yes	60	9417100	9370209	153672	99.5
	HCAL Singles/Coincidence	yes	off	30282609	30125423	0	99.5
		yes	off	33836274325	33663041357	0	99.5
		yes	off	0	0	0	0
		yes	off	0	0	0	0
	MBD S >= 2	yes	off	86958423	86380777	0	99.3
	MBD N >= 2	yes	off	85797943	85195687	0	99.3
	MBD N&S >= 2	yes	0	10242665	10187457	10187457	99.5
	MBD N&S >= 1	yes	off	18093659	17967450	0	99.3
	MBD N&S >= 2, vtx < 10 cm	yes	off	4021509	4000602	0	99.5
	MBD N&S >= 2, vtx < 30 cm	yes	off	5799143	5768655	0	99.5

Cheng-Wei Shih (NCU, Taiwan)

Note: the hit transmission from chip to ROC: 1 hit / 1 bco

Note: the hit transmission from chip to ROC: 1 hit / 1 bco

Question 3.: As shown in cartoon, what if we have hit_bco_0 in "this_event", and the next trigger fired at "BCOFULL_128 (hit_bco_0, again)". In addition, the FELIX is still taking the hits for hit_bco_86 for "this_event". What will happen?

