Performance Study of the single electron tracking with INTT + EMCal

RIKEN

Takuya Kumaoka

T.Kumaoka

Motivation

Improve electron tracking using INTT by adding calorimeters

There is possibility TPC detector do not work well.

→ By adding calorimeter hit point, the tracking quality is expected to improve.
<Final goal>

Impove the E/p and reconstruct J/ ψ

<Short term goal>

(1) Estimate the correlation $p_{T, e}$ and how shift by magnetic field.

(2) Using the INTT and EMCal hit points, we estimate $p_{T, e}$ and it's resolution $(\delta p_T = p_{T, reco} - p_{T, truth})$

T.Kumaoka

Methods

Simulation: Single particle gun + GEANT4

Inject electron p_T : 0.5, 1, 2, 5, 8, 10 GeV/*c* (This talk is only 1 GeV/*c*) Inject range: ϕ : $-\pi$ to π , η : -1 to 1 GEANT4 Setting: Magnet 1.4 T (not flat: However, I still do not check the detail)

Detector: MVTX, INTT, TPC, EMCal, iHCal, oHCal

T.Kumaoka

Estimate track p_T using the Sagitta equation

Sagitta p_{T} equation $p_{T}[GeV] = qBR$ = 0.3B[T]R[m]

Fitting the circle equation $(y = \sqrt{R^2 - (x - x_s)^2 + y_s^2})$ for the three points (inner INTT, outer INTT, and EMCal) and estimate the *R*.

Using this R, the p_T can be calculated.

T.Kumaoka

Hit Matching Algorithm

- (1) Find a inner INTT cluster having the closest $\phi_{outer INTT}$
- (2) Caclulate $d\phi/dr$ (outer INTT inner INTT)
- (3) Searching for an EMCal cluster having the highest energy in the ϕ_{Cal} range

5° (~ 0.087 rad)

(3)

Calorimeter Deposit Energy Dispartion

Check the criteria to use a tower having the highest energy

- Electron deposits its most energy in a tower (not much dispersed).

 \rightarrow It seems well to use only the highest energy tower, temporally.

(1) Search for the wired point

(2) Make a map phi-eta (now project 2D map to phi direction)

T.Kumaoka

Without EMCal Hit Tracking p_{T} resoltion

Vertex+iINTT+oINTT

T.Kumaoka

Without EMCal Hit Tracking p_{T} resoltion

(2) Use ROOT fit (y =
$$\sqrt{R^2 - (x - x_c)^2} - y_c$$
)

The fit result's width becomes narrow, but the peak shifts to negative.

reco - truth

T.Kumaoka

Use some detectors p_{T} resoltion

The resolution become better, but not so good even the best one. And the peak is not zero...

T.Kumaoka

Understand the Way to Make a Calorimeter's Tower/Cluster

Clastering way and the postion is very sensitive for the $p_{\rm T}$ estimation.

→ Need to modify clustering or shift position.

T.Kumaoka

EMCal position shift p_{T} resoltion

I tried to move the Calorimeter geometry hit position from the surface to the center.

However, the result becomes worse and the peak is separated.

EMCal

- Surface of Calo
- Center of Calo
- Energy Weight

11 /17

T.Kumaoka

Use some detectors p_{T} resoltion (0.5 GeV/c)

iINTT+oINTT+EMCal

MVTX+iINTT+oINTT+EMCal

T.Kumaoka

Use some detectors p_{T} resoltion (0.5 GeV/c)

iINTT+oINTT+EMCal

Vertex Estimation

The distribution width is still so large. I have to improve it.

 \rightarrow I expect that using some tracks (PYTHIA) can improve the vertex position.

T.Kumaoka

eta resolution

T.Kumaoka

2024/12/06 INTT Weekly Meeting

15 /17

E/p

The peak is expected around 1. ($E = \sqrt{m^2 + p^2}$, $m \ll p \rightarrow E = p$ However, the value is smallear than 1.

I should try to add iHCal and oHCal energy.

T.Kumaoka

Outlook

- 1. Have to check some weird points of my results.
- 2. Increase p_T range of single electrons (p_T = 0.5, 1, 2, 5, 8, 10 GeV/c)
- \rightarrow Thanks to Cheng-Wei, the single electron samples were already made.
- 3. Check and summarize what does the calorimeter tower making and clustering do
- 4. Check that it work in PYTHIA simulation (tracking efficiency, p_{T} resolution)
- 5. Make event displays
- My schedule
- Dec 2nd week: Finish 2, 3.
- Dec 3rd week: I would like to take over this study for anyone.