

BNL LDRD Detector-II Weekly Meeting

Update on Muon ID Study in Forward Region at ePIC

Jihee Kim (jkim11@bnl.gov)

Brookhaven National Laboratory

What We Learned So Far

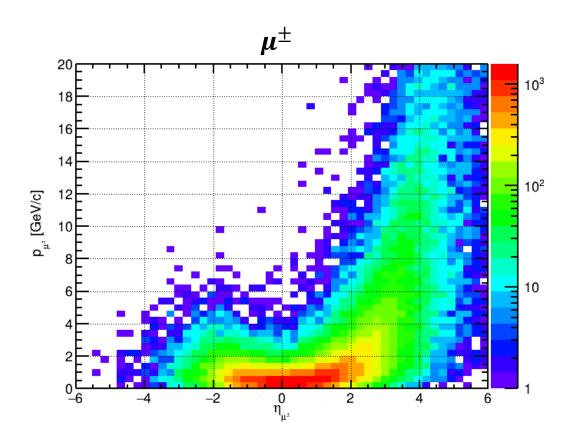
Some beneficial aspects for muon detection:

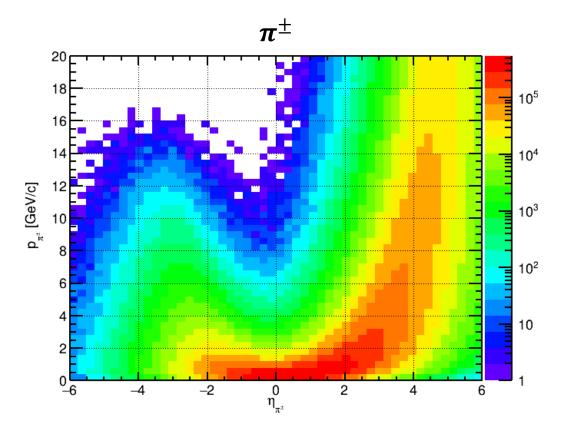
- Eliminate ambiguity since incoming/scattered and decay leptons are distinguishable and reduce combinatorial background (less radiative effects – better invariant mass resolution)
- In order to accommodate very small cross sections of both processes (double-statistics)

With muon and pion samples assuming the same kinematics (single sim):

Based on results incorporated the flux in the forward region (hadron-going),

- Smaller scattering angle (higher pseudo-rapidity) tends to have larger pion background
- Single muon detection might be challenging by just using fECAL and fHCAL


What We Learned So Far


▼ For same sample size (η = 1.74 or θ = 20°)

Momentum [GeV/c]	Muon Efficiency ($rac{N_{\mu ightarrow \mu}}{N_{\mu}}$)	Background Rejection Efficiency ($rac{N_{\pi o \pi}}{N_{\pi}}$)	Mis-ID Efficiency $(rac{N_{\pi o \mu}}{N_{\pi}})$
1	0.752747	0.962042	0.037958
2	0.987315	0.987468	0.012532
5	0.997934	0.984391	0.015609
10	0.997733	0.990938	0.009062

Cross Section from PYTHIA Sample

Cross Section from PYTHIA Sample

η = 2.44	1 GeV/c	2 GeV/c	5 GeV/c	10 GeV/c
N_{μ}	254	283	76	4
N_{π}	226983	196246	41073	3311
N_π/N_μ	~ 893.63	~ 693.45	~ 540.43	~ 827.75
η = 2.02	1 GeV/c	2 GeV/c	5 GeV/c	10 GeV/c
N_{μ}	506	308	38	1
N_{π}	338213	153524	12806	981
N_π/N_μ	~ 668.41	~ 498.45	~ 337	~ 981
- 4.74	4.0-2//-	0.0-1//-	5 O - VII-	40.0-1//-
η = 1.74	1 GeV/c	2 GeV/c	5 GeV/c	10 GeV/c
N_{μ}	736	271	22	2
N_{π}	368039	109691	7507	492
N_π/N_μ	~ 500	~ 405	~ 342	~ 246
η = 1.51	1 GeV/c	2 GeV/c	5 GeV/c	10 GeV/c
N_{μ}	793	233	14	2
N_{π}	364095	68969	4248	278
$N_{m{\pi}}/N_{m{\mu}}$	~ 459.14	~ 296.00	~ 303.43	~ 139

What We Learned So Far

▼ For same sample size (η = 1.74 or θ = 20°)

Momentum [GeV/c]	Muon Efficiency ($rac{N_{\mu ightarrow \mu}}{N_{\mu}}$)	Background Rejection Efficiency ($rac{N_{\pi o \pi}}{N_{\pi}}$)	Mis-ID Efficiency $(rac{N_{\pi o \mu}}{N_{\pi}})$
1	0.752747	0.962042	0.037958
2	0.987315	0.987468	0.012532
5	0.997934	0.984391	0.015609
10	0.997733	0.990938	0.009062

▼ Taking muon and pion flux into account based on PYTHIA8 ep 18×275 GeV² 10M in high divergence mode

Momentum [GeV/c]	Muon Efficiency	Mis-ID Rate $(N_{\pi \to \mu})*(cross\ section)\}$	Signal-to-Background $(\frac{N_{\mu o \mu}}{\{(N_{\pi o \mu})*(ext{cross section})\}})$
1	0.752747	0.96185097	0.03966210
2	0.987315	0.83715130	0.19452720
5	0.997934	0.84250306	0.18693931
10	0.997733	0.69081573	0.44756403

JIHEE KIM

Results

▼ For same sample size (η = 2.44 or θ = 10°)

Momentum [GeV/c]	Muon Efficiency ($rac{N_{\mu ightarrow \mu}}{N_{\mu}}$)	Background Rejection Efficiency ($rac{N_{\pi o \pi}}{N_{\pi}}$)	Mis-ID Efficiency $(\frac{N_{\pi o \mu}}{N_{\pi}})$
1	0.988104	0.941976	0.058024
2	0.994872	0.973376	0.026624
5	0.999282	0.981273	0.018727
10	0.998664	0.988116	0.011884

▼ Taking muon and pion flux into account based on PYTHIA8 ep 18×275 GeV² 10M in high divergence mode

Momentum [GeV/c]	Muon Efficiency	Mis-ID Rate $(N_{\pi \to \mu})*(cross\ section)\}$ $(N_{\mu \to \mu}+\{(N_{\pi \to \mu})*(cross\ section)\})$	Signal-to-Background $(\frac{N_{\mu o \mu}}{\{(N_{\pi o \mu})*(ext{cross section})\}})$
1	0.988104	0.98130770	0.019048355
2	0.994872	0.94883742	0.053921339
5	0.999282	0.91007070	0.098815732
10	0.998664	0.90786056	0.10149074

Results

▼ For same sample size (η = 2.02 or θ = 15°)

Momentum [GeV/c]	Muon Efficiency ($rac{N_{\mu ightarrow \mu}}{N_{\mu}}$)	Background Rejection Efficiency ($rac{N_{\pi o \pi}}{N_{\pi}}$)	Mis-ID Efficiency $(rac{N_{\pi o \mu}}{N_{\pi}})$
1	0.990663	0.942297	0.057703
2	0.994655	0.975953	0.024047
5	0.998992	0.982516	0.017484
10	0.998665	0.98817	0.01183

▼ Taking muon and pion flux into account based on PYTHIA8 ep 18×275 GeV² 10M in high divergence mode

Momentum [GeV/c]	Muon Efficiency	Mis-ID Rate $(N_{\pi \to \mu})*(cross\ section)\}$	Signal-to-Background $(\frac{N_{\mu \to \mu}}{\{(N_{\pi \to \mu})^* ({ m cross section})\}})$
1	0.990663	0.97494293	0.025701063
2	0.994655	0.92331146	0.083058144
5	0.998992	0.85503156	0.16954747
10	0.998665	0.92076537	0.086053012

Results

▼ For same sample size (η = 1.51 or θ = 25°)

Momentum [GeV/c]	Muon Efficiency ($rac{N_{\mu ightarrow \mu}}{N_{\mu}}$)	Background Rejection Efficiency ($rac{N_{\pi o \pi}}{N_{\pi}}$)	Mis-ID Efficiency $(rac{N_{\pi o \mu}}{N_{\pi}})$
1	0.00057	0.879435	0.120565
2	0.998268	0.940588	0.059412
5	0.998201	0.982762	0.017238
10	0.998999	0.990299	0.009701

▼ Taking muon and pion flux into account based on PYTHIA8 ep 18×275 GeV² 10M in high divergence mode

Momentum [GeV/c]	Muon Efficiency	Mis-ID Rate $(N_{\pi \to \mu})*(cross\ section)\}$	Signal-to-Background $(\frac{N_{\mu o \mu}}{\{(N_{\pi o \mu})*(ext{cross section})\}})$
1	0.00057	0.99998970	0.00001030
2	0.998268	0.94628411	0.056765082
5	0.998201	0.83955145	0.19111224
10	0.998999	0.57443008	0.74085591

Path Forward for Muon ID Study

There might be another suppression factor to muon identification

In case of Hard Exclusive Meson Productions

O Pair reconstruction such as $J/\psi \to \mu^+\mu^-$ may have better chance on reducing background (invariant mass)

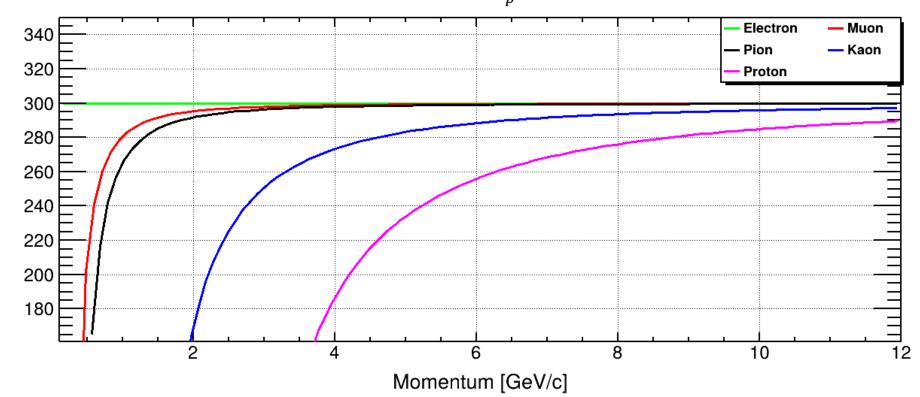
Next Step

Use PYTHIA events (electroproduction $Q^2 > 1$ GeV) with 3 tracks in main detector

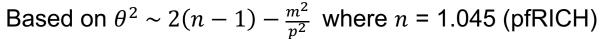
**J/ ψ di-muon (J/ ψ , ϕ , ρ , Υ , etc) and photoproduction Q² < 1 GeV

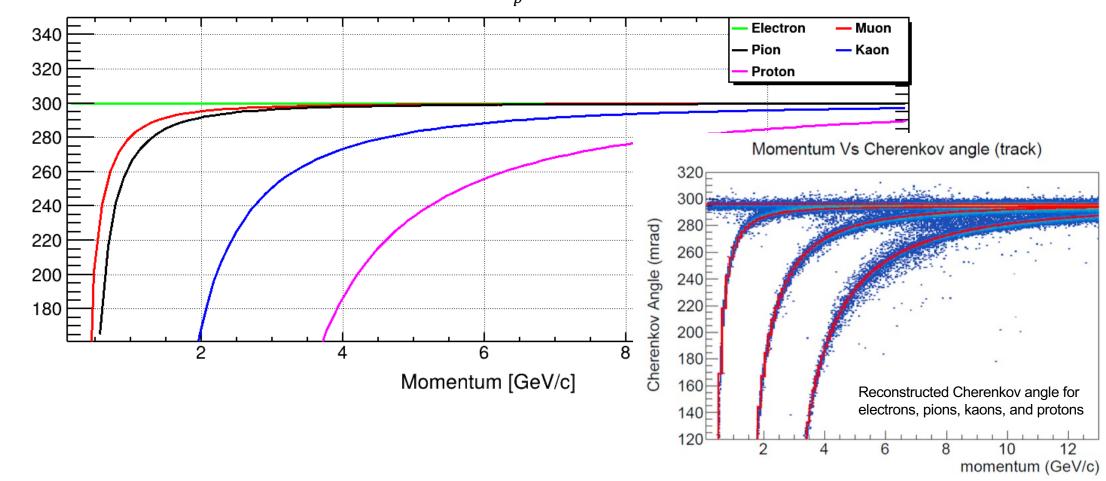

Match tracks to calorimeter clusters, Look at calorimeter information, and Select events have MIP-like response (exclude shower-like in calorimeter)

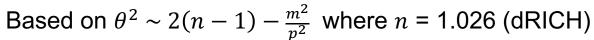
Do invariant mass reconstruction to check

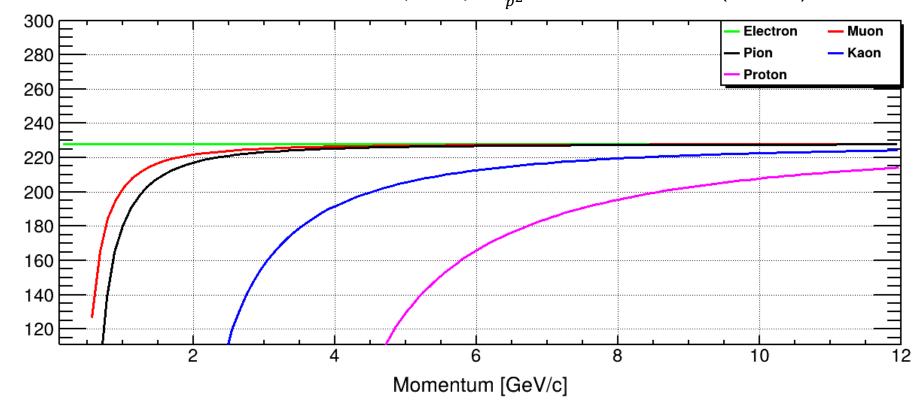


What about Adding PID Detector Information?

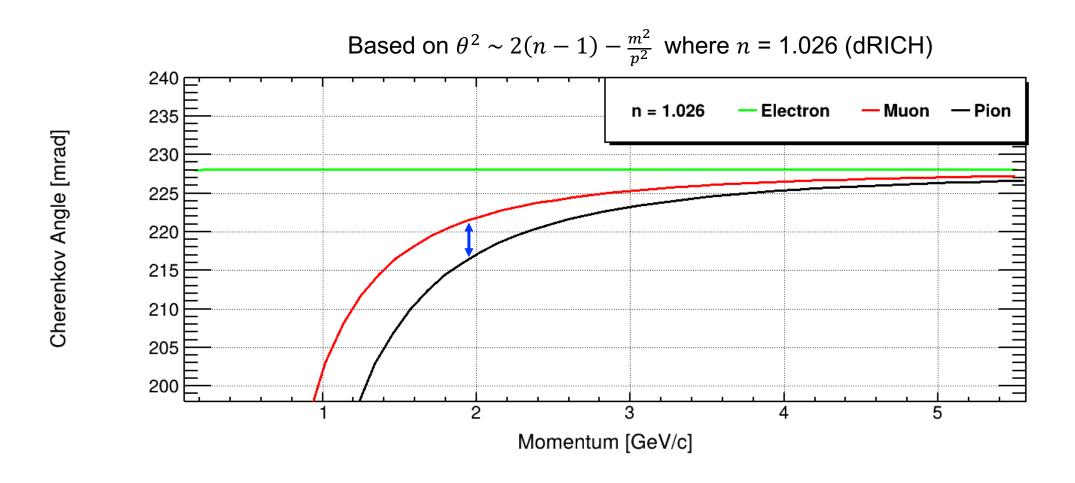


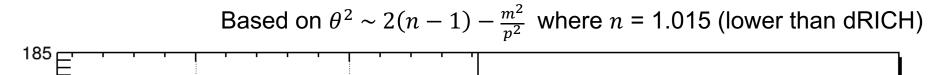




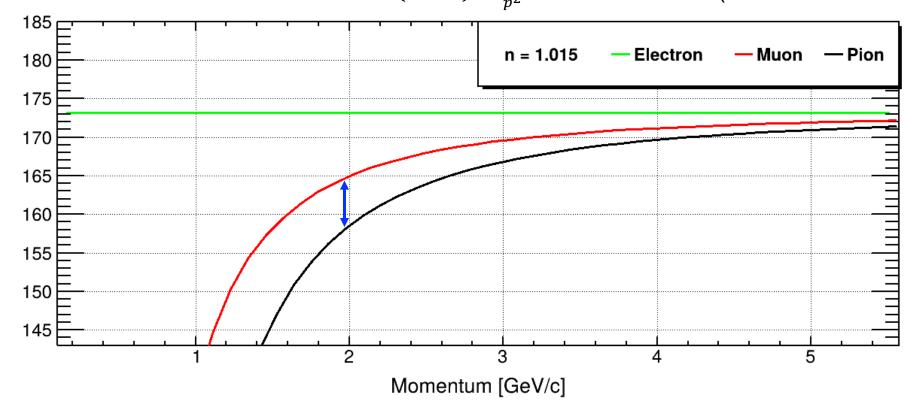


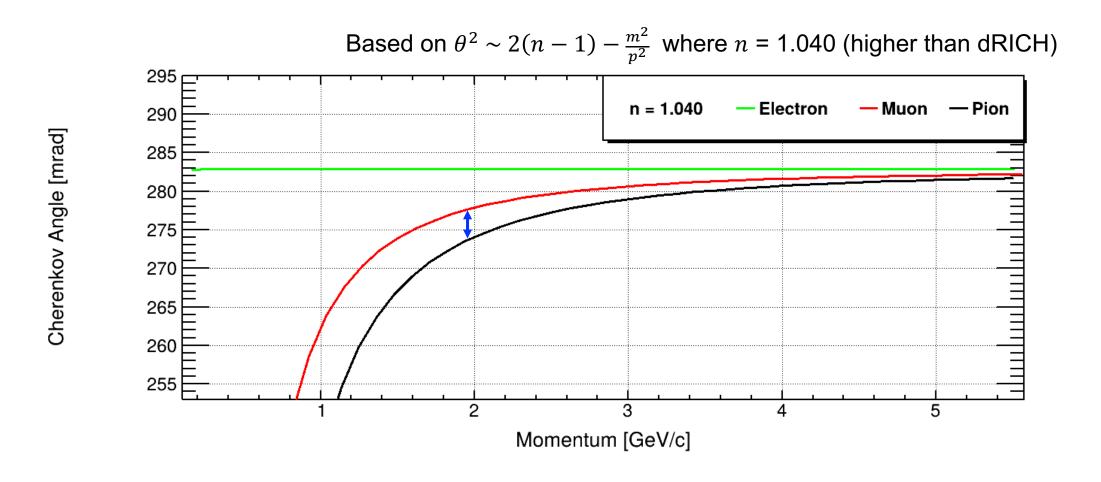
Taken from EIC PDR v.1 (Figure 8.68 on page 129)





According to Chandra Chatterjee, n = 1.026 (baseline 1.019) Aerogel single photon resolution at n = 1.026 is ~ 2.4 mrad Ring (track-level) resolution ~ 0.5 mrad Given we can detect 15 photons





▼ Muon and pion separation in Cherenkov Angle

	n = 1.015	n = 1.026	n = 1.040
p = 1.5 GeV	12.1446 [mrad]	8.69475 [mrad]	6.83120 [mrad]
p = 2.0 GeV	6.42687 [mrad]	4.73642 [mrad]	3.76644 [mrad]
p = 2.5 GeV	4.00843 [mrad]	2.98872 [mrad]	2.38896 [mrad]
p = 3.0 GeV	2.74643 [mrad]	2.05997 [mrad]	1.65104 [mrad]
p = 3.5 GeV	2.00184 [mrad]	1.50669 [mrad]	1.20952 [mrad]

- In ePIC baseline aerogel refraction index ~ 1.019
- However, n = 1.026 performs better because of optical quality of material improvement (CLAS12 n = 1.019)
- Aerogel single photon resolution for 1.026 ~ 2.4 mrad (where for 1.019 ~ 3 mrad)
- With aerogel 1.026 we gain ~ 50 % more photons compared to 1.019
- Regarding ring (track-level) resolution, it depends on thickness optimization of aerogel (4 cm and 6 cm were studied). Resolution 0.5 mrad and given we can detect 15 photons

To-Do List

- □ PYTHIA events to estimate background
- ☐ PID: Time-of-Flight

Backup Slides

