

BNL LDRD Detector-II Weekly Meeting

Update on Muon ID Study at ePIC

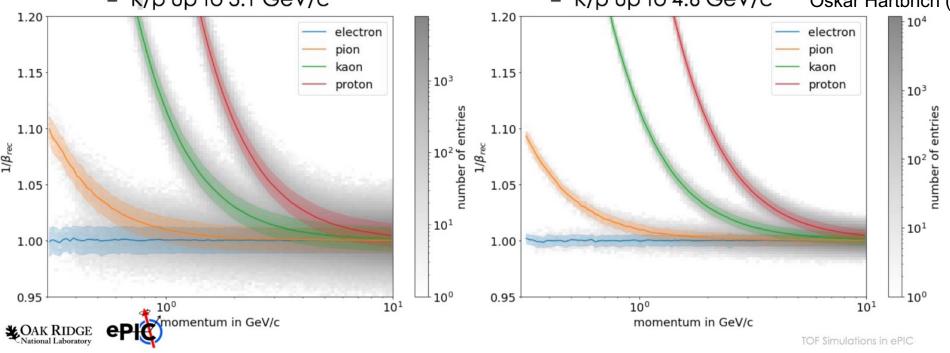
Jihee Kim (jkim11@bnl.gov)

Brookhaven National Laboratory

What's New

- Estimate FTOF performance on muons comparing to pions
 - \circ 1/ β vs momentum
 - Time Of Fight (TOF) for muon and pion
- Estimate background from DIS sample
 - \circ ep 18 on 275 GeV with $Q^{2}_{min} = 1$
 - Event selection with 3 tracks (3 charged particles in a detector)
 - Exclude scattered electron using true PID
 - Calculate invariant mass of two leftover particles
 - Apply PID table/true PID to cut protons and kaons
 - Look at calorimeter response to see if MIP-like events
 - Use ML (Work In Progress)

Approach


- Estimate FTOF performance on muons comparing to pions
 - \circ 1/ β vs momentum
 - Time Of Fight (TOF) for muon and pion

FTOF Performance at ePIC

- Barrel Region
 - e/pi up to 0.5 GeV/c
 - pi/K up to 1.9 GeV/c
 - K/p up to 3.1 GeV/c

- Endcap Region
 - e/pi up to 0.8 GeV/c
 - pi/K up to 2.7 GeV/c
 - K/p up to 4.6 GeV/c
 Oskar Hartbrich (Oak Ridge)

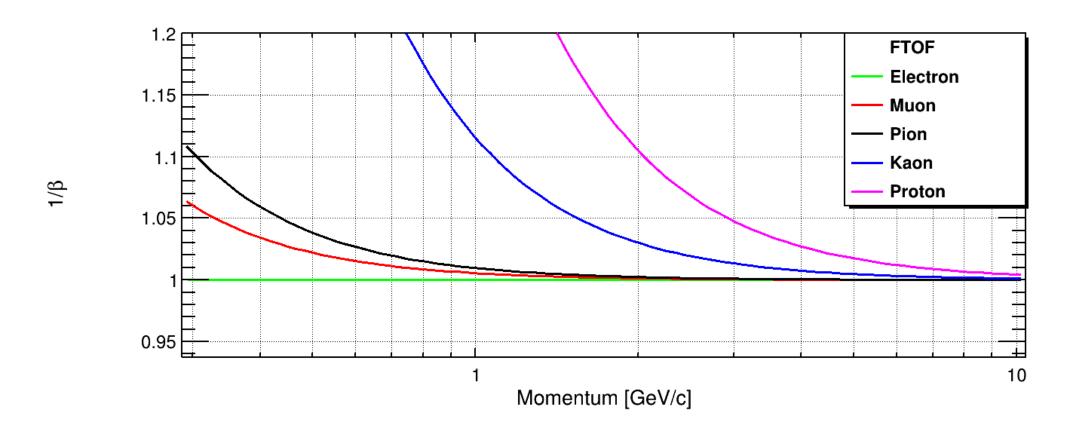
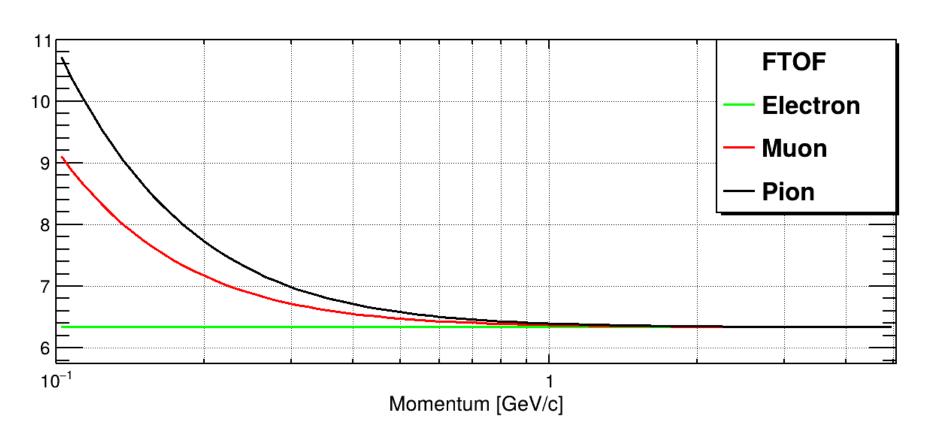
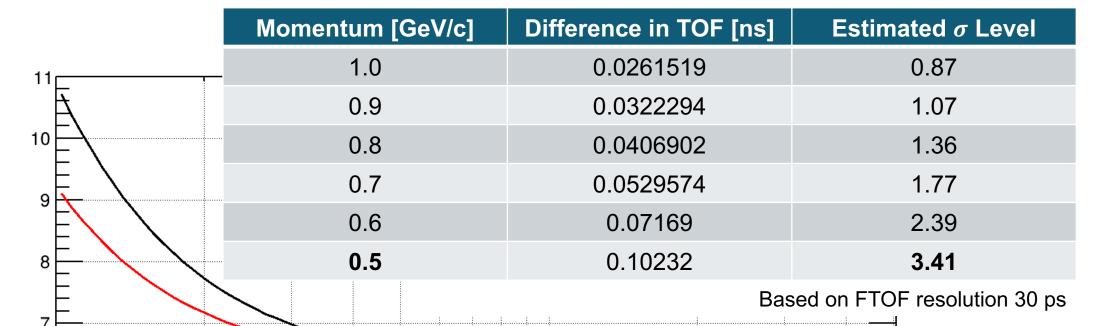


Figure 8.64: simulation of $1/\beta$ as a function of particle momentum for BTOF and FTOF performance.

Taken from EIC PDR v.1 (Figure 8.64 on page 123)


FTOF Performance – $1/\beta$ vs Momentum

FTOF Performance – Time of Flight



Assumed distance (straight from IP to FTOF plane; $z_{min} = 185$ cm and $r_{max} = 60$ cm)

FTOF Performance – Time of Flight

TOF [ns]

 10^{-1}

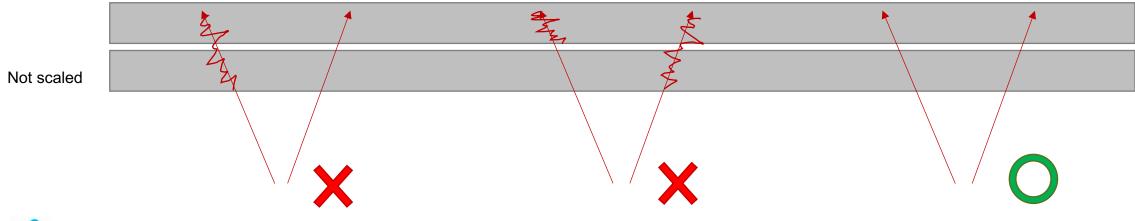
PID Summary for Muon ID

dRICH n = 1.026	Difference in Cherenkov Angle [mrad]	Estimated σ Level
p = 1.5 GeV	8.69475	17.4σ
p = 2.0 GeV	4.73642	9.5σ
p = 2.5 GeV	2.98872	6σ
p = 3.0 GeV	2.05997	4.1σ
p = 3.5 GeV	1.50669	3σ
FTOF d = IP to FTOF plane	Difference in TOF [ns]	Estimated σ Level
		Estimated σ Level 0.87σ
d = IP to FTOF plane	[ns]	
d = IP to FTOF plane p = 1.0 GeV/c	[ns] 0.0261519	0.87σ
d = IP to FTOF plane p = 1.0 GeV/c p = 0.8 GeV/c	[ns] 0.0261519 0.0406902	0.87σ 1.36σ

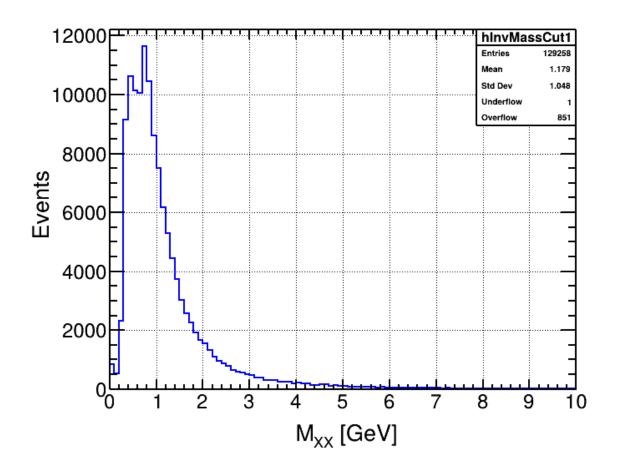
Upper limit (3 σ separation)

- o dRICH
 - $\rho = \mu/\pi$ up to 3.5 GeV/c
- o FTOF
 - $\rho = \mu/\pi$ up to 0.5 GeV/c

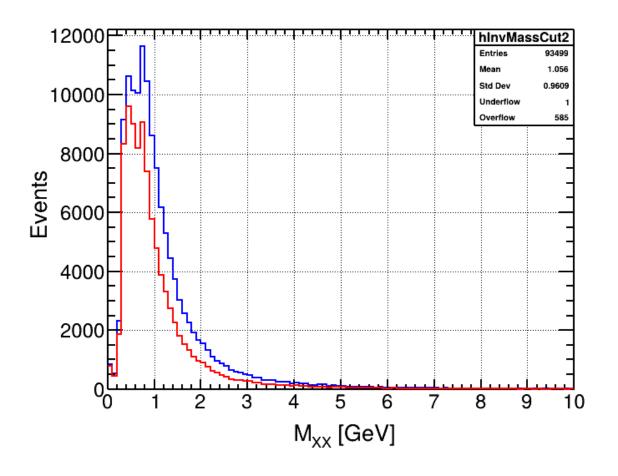
dRICH could be helpful for low momentum (below 3.5 GeV/c)


Need to think about

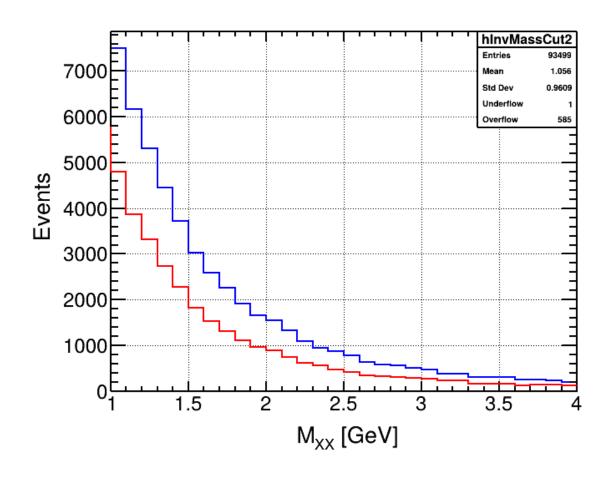
- Good enough momentum resolution at very low momentum
- How many low momentum muons/pions can travel beyond PID and reach up to forward calorimeter


Approach

- Estimate background from DIS sample
 - \circ ep 18 on 275 GeV with $Q_{min}^2 = 1$
 - Event selection with recon 3 tracks (3 charged particles in a detector)
 - Exclude scattered electron using true PID
 - Calculate invariant mass of two leftover particles
 - Apply PID table/true PID to cut protons and kaons
 - Look at calorimeter response to see if MIP-like events

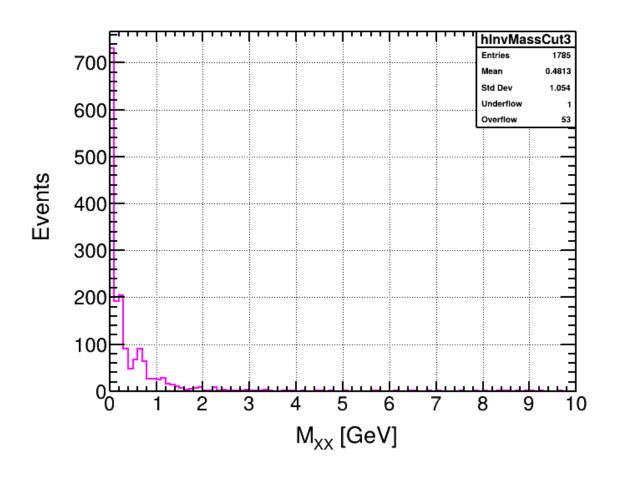


- Only 3 recon tracks within an event
- Exclude scattered e by true ID
- Calculate M_{XX} using remaining 2 tracks



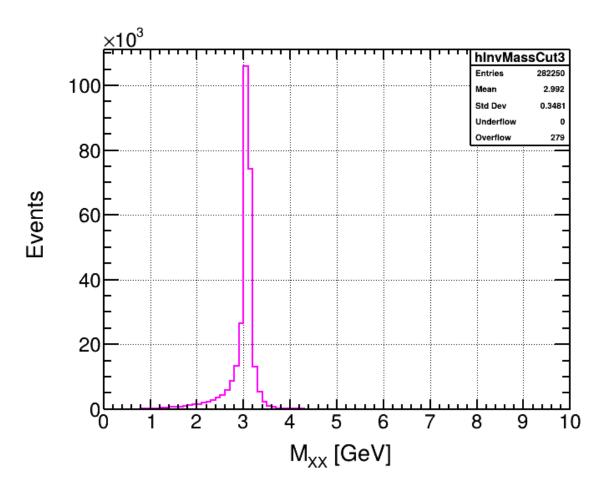
- Only 3 recon tracks within an event
- Exclude scattered e by true ID
- Calculate M_{XX} using remaining 2 tracks
- o Exclude p and K^{\pm} by true ID
 - Next step will be using PID look-up table

- Only 3 recon tracks within an event
- Exclude scattered e by true ID
- Calculate M_{XX} using remaining 2 tracks
- o Exclude p and K^{\pm} by true ID
 - Next step will be using PID look-up table



DIS Event with All Cuts

- Only 3 recon tracks within an event
- Exclude scattered e by true ID
- Exclude p, K^{\pm} , and π^{\pm} by true ID
- Calculate M_{XX} using remaining 2 tracks
 - Mostly electron/positron pairs, muons, etc


Unfortunately, there are no J/ψ in this sample.

DIS Event Real Signal with J/ψ

- Only 3 recon tracks within an event
- Exclude scattered e by true ID
- Exclude p, K^{\pm} , and π^{\pm} by true ID
- Calculate M_{XX} using remaining 2 tracks

- Only 3 recon tracks within an event
- Exclude scattered e by true ID
- Calculate M_{XX} using remaining 2 tracks
- Exclude p and K^{\pm} by true ID
- Check calorimeter response

Looking at calorimeter clusters,

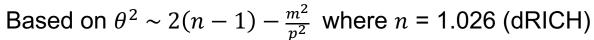
- Each reconstructed hit have no true PID, but each calorimeter cluster have true PID
- Each Cluster have # of hits, energy, and position in (x,y,z)

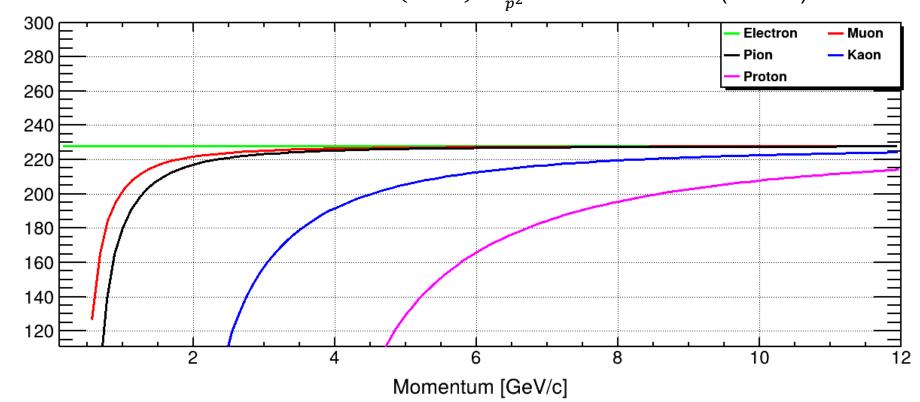
Not trivial, A bit complicated than what I expected:

- Multiple calorimeter clusters assigned to same true particle
- Calorimeter cluster selection: Match tracker info and calorimeter cluster by (η, ϕ)

In ML, I used sum of reconstructed hits in # of hits and energy for Ecal and Hcal layer, not cluster level.

To-Do List


- ☐ Use ML on ep DIS events for muon ID
 - Divide into three rapidity regions (backward/central/forward)
 - \Box (Signal) Muon with $f(\theta, p)$
 - \Box (Background) Pion with $f(\theta, p)$
 - □ Calorimeter level? Reconstructed hit level?
 - □ Track and Calorimeter cluster matching
- □ Include PID information?


Backup Slides

Estimate PID Performance

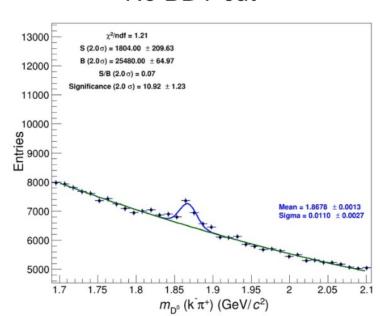
According to Chandra Chatterjee, n = 1.026 (baseline 1.019) Aerogel single photon resolution at n = 1.026 is ~ 2.4 mrad Ring (track-level) resolution ~ 0.5 mrad Given we can detect 15 photons

Estimate PID Performance

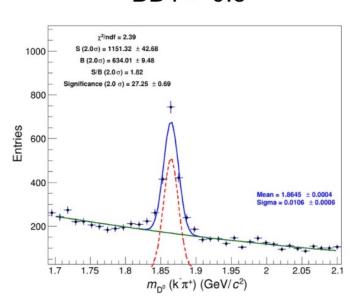
▼ Muon and pion separation in Cherenkov Angle

	n = 1.015	n = 1.026	n = 1.040
p = 1.5 GeV	12.1446 [mrad]	8.69475 [mrad]	6.83120 [mrad]
p = 2.0 GeV	6.42687 [mrad]	4.73642 [mrad]	3.76644 [mrad]
p = 2.5 GeV	4.00843 [mrad]	2.98872 [mrad]	2.38896 [mrad]
p = 3.0 GeV	2.74643 [mrad]	2.05997 [mrad]	1.65104 [mrad]
p = 3.5 GeV	2.00184 [mrad]	1.50669 [mrad]	1.20952 [mrad]

- In ePIC baseline aerogel refraction index ~ 1.019
- However, n = 1.026 performs better because of optical quality of material improvement (CLAS12 n = 1.019)
- Aerogel single photon resolution for 1.026 ~ 2.4 mrad (where for 1.019 ~ 3 mrad)
- With aerogel 1.026 we gain ~ 50 % more photons compared to 1.019
- Regarding ring (track-level) resolution, it depends on thickness optimization of aerogel (4 cm and 6 cm were studied). Resolution 0.5 mrad and given we can detect 15 photons



From Jets/HF Early Science Plans by Rongrong Ma at Jan 2025 ePIC collaboration meeting, Shyam Kumar (INFN, Bari) and Connie Yang (UT Austin) developing ML to optimize topological cuts for D⁰ reconstruction


Recent progress: Machine learning

By Shyam Kumar (INFN)

BDT > 0.8

For 5 fb⁻¹ which corresponds to 6.5M ep collisions at 10x100 with Q² > 100 GeV², we expect significance ~ 30 in total with current study

ξ