

INTT cosmic analysis update Wei-Che Tang, NCU

2024/12/12 INTT weekly meeting

Cosmic Analysis status

- Multiple runs have been analyzed.
 - Run number: 39365~39530, ~25 runs (Run2024 cosmic data)
 - Trigger used: HCal Vertical trigger
 - The raw cluster DST is check and some pre-selections is applied before the cosmic analysis:
 - Hot channel mask
 - Good clusters required
 - Requirements : 'cluster Adc > 15' (Adc0 is set to be 15) & 'cluster size < 9'</p>
- Cosmic track reconstruction
 - Focus on the events whose total clusters equal to 4.
 - Fit the clusters with a straight line (0 field cosmic).
 - Reduced residual is used to evaluate the fitting quality (to minimize the track angle dependence)
 - Residual cut applied:
 - xy residual < 0.02 cm, applied fitting line coverage check on z-axis

Recap previous results

- The distribution of the ϕ angle (in xy plane) and heta angle (in zr plane)
 - ⇒ Try to enlarge the statistic & do more check on cosmic data

90°

0°

Coordinate of track angle

Clusters Hitmap

- The cluster hitmap in both xy and zr plane
 - There is a hot region on xy plane. \rightarrow This also implies the track distribution.
 - No hot region on zr plane.

The DCA point for tracks

- The sketch shows the DCA definition.
- The figure shows the DCA points projected on xy plane.
 - \rightarrow The plot also implies the acceptance angle of cosmic tracks.

DCA point

90° Coordinate of track angle $180^{\circ} \rightarrow 0^{\circ}$

- The right figure shows the correlation between DCA and tracking angle.
 - Also shows the acceptance angle.
 - The more track angle close to 90 degrees, the larger DCA range can have.

→ Expected geometry. Those plots can check whether the trigger conditions (high correlation with track angle acceptance) have been changed or not.

Angle distribution

- The distribution of the ϕ angle (in xy plane) and heta angle (in zr plane).
- The angle acceptance agree with the cluster hitmap.

90°

 0°

Coordinate of track angle

Summary

- Adding more statistic into the analysis.
- Check the cluster hitmap on xy and zr plane. \rightarrow Looks pretty normal.
- Check the DCA points projected on xy plane.
 - The hitmap implies the angle acceptance for cosmic track.

 \rightarrow One can check those DCA plots to make sure the trigger condition.

• The angle distribution agrees with the clusters and DCA checks.

To do:

- Next step:
 - More statics!
 - Polish the algorithm and workflow to obtain more than 4 clusters tracks.
 - Giving out a set of good cosmic data. (Further step)

 \rightarrow Could help people to do geometry study with good cosmic data.

- There will be TPS in the coming Jan., I would like to show some status for the cosmic study in TPS...
 - Showing "Working in progress" on the plots (?)

The DCA point of tracks

• The distribution of DCA point.

More on angle distribution

- The distribution of the ϕ angle (in xy plane) with a DCA cut.
 - | DCA | < **0.5 cm**

90°

Coordinate of track angle

 0°

More on angle distribution

- The distribution of the ϕ angle (in xy plane) with a DCA cut.
 - | DCA | < **1 cm**

90°

 0°

More on angle distribution

- The distribution of the ϕ angle (in xy plane) with a DCA cut.
 - | DCA | < **2** cm
- Leak of

90°

 0°