Backward Hadronic Calorimeter Status and plans

Leszek Kosarzewski

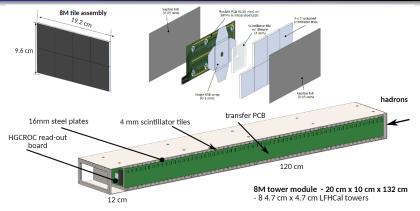
The Ohio State University

nHCal DSC meeting 18.12.2024

Outline

- Status
- Plans
- Tasks
- Summary

- Basic pre-TDR completed Congratulations!
 - Zenodo v1: https://doi.org/10.5281/zenodo.14328280
 - Review of v1: https://docs.google.com/spreadsheets/d/ 1mineH2breuoVui-uZm1ZYSraRquLjM9o0Y4w2ASdvtA/edit?usp=sharing
 - No feedback from official review yet, but looks good enough compared to rest
 - Please check repositories here and add your codes to reproduce the plots by the end of December
 - Repositories located here:
 - https://github.com/orgs/OSUNuclearPhysics/repositories
 - Need to add you there to users contact me
- Created a links page (use it!): https://docs.google.com/spreadsheets/d/ 1m6NzPk4mfQI8YQE8cwO9sLJyKp5iH6pqttPGqYzTmZ8/edit?usp=sharing

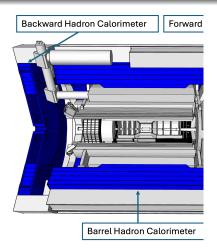

Plans

- Complete ongoing studies
 - Diffractive dijets
 - Position resolution
 - Jets with neutrals
 - Vector meson reconstruction
 - Scattered electron ID
 - Tile tests
- ePIC Collabration meeting 2025.1.20-24
 - https://agenda.infn.it/event/43344/
 - None from the OSU or UIUC plans to participate
 - Good opportunity for CTU in Prague to represent us
 - Self-nominated contributions are a god way to go
 - Interesting workfests:

 $\verb|https://\bar{a}genda.infn.it/event/43344/page/9444-workfest-descriptions|$

- IntegrationTracking Projections/Resolution at hpDIRC
- Exclusive, Diffraction and Tagging WG
- Jets and Heavy Flavor Workfest
- Organize construction of prototype and beam tests
 - LFHCAL group plans to organize a readout electronics and testbeam workshop at ORNL sometime in spring
 - We should participate
- Start working on the remaining topics
- Oheck alternative KLM-type design
- Warsaw University of Technology may provide a bachelor student to work on a technical topic (or master on more advanced)
 - Diploma thesis proposals February-March for bachelors
 - Masters: May

Prototype construction

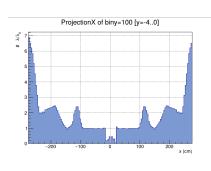


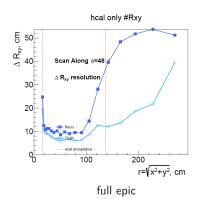
- LFHCAL module designs: https://indico.bnl.gov/event/25021/
 - Direct: https://indico.bnl.gov/event/25021/attachments/57749/99174/8M% 20Tower%20Assem_Combined_Oct1.pdf
- Reuse spare LFHCAL module? Eg. place tiles at the beginning and ignore the rest.
 - The absorber plates have different thickness and are fixed, so we have to fill the gaps with steel.
 - Modules produced with electron beam welding in a vacuum.
- Produce our own module? Most likely.

Position resolution improvement

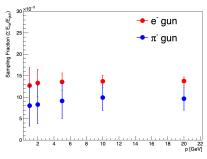
- Check if using max energy deposit in the first layer improves position resolution
- O 3D clustering
 - Store subclusters for every layer
 - Code for BIC from Sylvester: https://eicweb.phy.anl.gov/EIC/juggler/-/blob/main/JugReco/src/components/ImagingClusterReco.cpp
 - Fit a line through the clusters across the layers (and compare to a reco track)
- Independent vs. integrated readout from layers
 - · Affects 3D clustering etc.
 - If removed, most likely no effect on energy resolution
 - Can reduce channels by factor of 10
- Machine Learning reconstruction revisit later

Detector thickness in z




- \bullet Can we extend from 45 cm in z to eg. 70 cm?
 - · Limited by oculus and room for electronics
 - Increases cost estimate?
 - Improves energy resolution quantify?
 - Other benefits?

Additional charged veto and SMD layer


- Investigate if adding extra scintillator layer as a charged veto helps isolate neutral showers
- 2 This extra layer needs to be thicker eg. 2 cm to leave enough signal
- Can have better granularity than standard tiles
- Revisit option of adding an SMD layer with high position resolution
- 2 Initially no plans to reuse STAR EEMC SMDs, because of too low light yield
- Similar idea to KLM
- Another option to use smaller tiles

High material impact on shower reco

- Investigate impact in more details
 - Basic distributions, hits etc. vs. radial distance
 - Check the true stop vertex of MCparticle
- Try to determine optimal clustering parameters
- If needed revisit position resolution study with full geometry

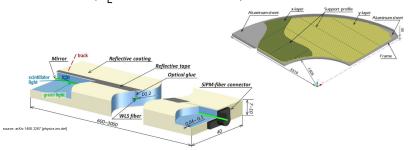
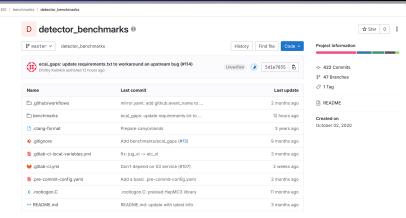

Particle	Momentum (GeV/c)	Sampling Fraction (%)	Uncertainty (%)
Electron	1.0	1.28	± 0.42
Electron	2.0	1.33	± 0.31
Electron	5.0	1.36	± 0.21
Electron	10.0	1.37	± 0.15
Electron	20.0	1.37	± 0.10
Pion	1.0	0.79	± 0.46
Pion	2.0	0.83	± 0.44
Pion	5.0	0.91	± 0.40
Pion	10.0	0.98	± 0.31
Pion	20.0	0.96	± 0.27
Neutron	1.0	N/A	N/A
Neutron	2.0	0.40	± 0.32
Neutron	5.0	0.67	± 0.30
Neutron	10.0	0.79	± 0.30
Neutron	20.0	0.84	± 0.39

Table 1: Sampling Fraction of nHCal for Different Particle Species

- Revise sampling fraction calculation using actual energy deposits in absorber and scintillators
- Looks like sampling fraction may decrease at lower energy
- Larger differences expected for pions and neutrons at lower energy
- \bullet Try to optimize it towards measurements of $\approx 1\,\mathrm{GeV}$ neutrons
- Add uncertainty on sampling fraction to eicrecon

KLM design alternative

Belle II KLM (K, and muon detector)


Schematic structure of the Belle II KLM scintillator setup

- Proposal of KLM-type detector for EIC Detector 2
- Advantages: cheaper, better position resolution
- Potential problems (to solve):
 - Long scintillator planks signal attenuation in WLS may be a problem
 - Non-trivial clustering
- Links:
 - https://indico.cern.ch/event/1238718/contributions/5485996/attachments/ 2693846/4675083/2nd%20Detector%20KLM%20Warszawa%202023.pdf
 - https://www.jlab.org/sites/default/files/eic_rd_prgm/files/2023_ Proposals/EIC_KLM_R_D_Proposal_2023_EICGENRandD2023_18.pdf

Light propagation simulation

- Perform light propagation simulation to check the tile design
- Use it to optimize SiPM mounting
- Use Tracepro or modified Geant4 from Jarda Adam
- https://github.com/adamjaro/lmon/tree/master

Benchmarks for CD/CI

- Develop benchamrks for CD/CI
- https://eicweb.phy.anl.gov/EIC/benchmarks/detector_benchmarks
- https://indico.jlab.org/event/420/contributions/8307/attachments/6911/9434/20210504-Automated_workflows.pdf
- Useful for automated checks: hit distributions, acceptance etc.
- Ideal task for bachelor and undergraduate students
- Potential topic for WUT student

Conclusions

- Presented status
- Discussed plans for the future
- Organized a list of tasks

BACKUP