Effect of FTHMC with 2+1 Domain Wall Fermions on Autocorrelation Times via Master-Field Technique I

S. Yamamoto¹ P. A. Boyle¹ T. Izubuchi¹ L. Jin²

¹Brookhaven National Laboratory

²Department of Physics University of Connecticut

³Department of Physics University of Boston

March 7, 2025

Table of Contents

Introduction

2 Field Transformation

Table of Contents

Introduction

Pield Transformation

Lattice QCD

In lattice QCD, $\langle O \rangle$ is evaluated non-perturbatively.

Wick-rotated

$$\langle O \rangle = \frac{1}{Z} \int \mathcal{D}\phi O(\phi) e^{-S_{\rm E}}$$

ullet Then, we use $e^{-S_{
m E}}$ as a Monte-Carlo weight and have

$$\langle O \rangle = \lim_{N \to \infty} \frac{1}{N} \sum_{i}^{N} O_{i} \approx \frac{1}{N} \sum_{i}^{N} O_{i}.$$

Configurations are sampled using importance sampling method

Markov Chains

Markov chain: $\{X_n\}_{n=0}^N$

A sequence of random variables with Markov Property:

$$\Pr\{X_n = x_n | X_{n-1} = x_{n-1}, X_{n-2} = x_{n-2}, \dots, X_0 = x_0\}$$

$$= \Pr\{X_n = x_n | X_{n-1} = x_{n-1}\} = P_n^{x_{n-1}}(x_n) = \frac{P_{X_n \cap X_{n-1}}(x_n, x_{n-1})}{P_{X_{n-1}}(x_{n-1})}$$

- In words, the probability of a event happening depends only on the outcome of the last outcome and not on the history of events
- Here, $P_n^{x_{n-1}}: E \to [0,1]$
- P₀ is an initial distribution corresponding to an independent random variable
- Transition Probability, $T_n: E \times E \to [0,1]$ via $T_n(x_n,x_{n-1}) = P_n^{x_{n-1}}(x_n)$

Markov Chains

In QCD, we consider time-homogeneous Markov Chain, i.e.,

- $\Pr\{X_{n+1} = x_{n+1} | X_n = x_n\} = \Pr\{X_n = x_n | X_{n_1} = x_{n-1}\}$ $\therefore T_n = T$
- Also, $P_n(x_n) = T^n P_0(x_n)$

We assume

- our Markov chains is irreducible
- all states are aperiodic, $(\forall s \in E \ \forall N \in \mathbb{N}) \ T^N(s \to s) \neq 0$ and positive recurrent $E[\tau_{\text{recurrence}}] < \infty$

Then, [Rothe, 2012]

- There exists a stationary distribution π , and it is unique
- if the initial distribution is π , it is (wide-sense) stationary (WSS)
- if we further have $E[\tau_{\text{recurrence}}^2] < \infty$,

$$\langle O \rangle = (1/N) \sum_{i=1}^{N} O(x_i) + \mathcal{O}(1/\sqrt{N})$$

How do we find such T with a desired distribution π ?

The Acceptance-Rejection Method

$$T(i \rightarrow j) = T_0(i \rightarrow j) P_{acc}(i,j) + \delta_{ij} \sum_k T_0(i \rightarrow j) [1 - P_{acc}(i,j)]$$

- T_0 : a transition matrix with micro-reversibility, $T_0(s \to s') = T_0(s' \to s)$
- $P_{acc}(i,j) = \min\{1, \pi(i)/\pi(j)\}$

Then, the stationary distribution of T is the target distribution π .

Also, it satisfies detailed balance condition:

$$P(i)T(i \rightarrow j) = P(j)T(j \rightarrow i)$$

SU(3)

For QCD,

- $\pi(U) = \frac{1}{7}e^{-S_G(U)}$
- $Z = \int \mathcal{D} U e^{-S_G(U)}$

Requirement: [Luscher, 2010]

- $T(U \to U') \ge 0$ for all U, U' and $\int \mathcal{D}U' \ T(U \to U') = 1$ for all U.
- $\int \mathcal{D}U \ \pi(U) T(U \to U') = \pi(U')$ for all U'
- $\forall V \exists \mathcal{N}_V$, where \mathcal{N}_V is an open neighborhood of V in the space of gauge configurations, s.t.

$$\forall U, U' \in \mathcal{N}_V \exists \varepsilon > 0 \text{ s.t. } T(U \to U') \ge \varepsilon$$

The Acceptance-Rejection Method Revisited

Given a link U,

- **1** Propose a new link U' according to $T_0(U \rightarrow U')$
- ② Accept U' as the new link in the MC chain with probability $P_{acc} = \min\{1, e^{S_G(U) S_G(U')}\}$
- **1** Leave the link variable unchanged if the new value proposed in step (2) is not accepted, i.e., U' = U
- back to (1)

HMC

- HMC = Hybrid Monte Carlo = Molecular Dynamics (MD) + Monte Carlo (MC)
- In MD, a partition function of classical statistical system is approximated by trajectories of the canonical Hamilton system by using ergodicity
- To use the technique of MD,

$$Z = \int \mathcal{D}U e^{-S(U)} \propto \int \mathcal{D}U \mathcal{D}P e^{-P^2/2} e^{-S(U)} = \int \mathcal{D}U \mathcal{D}P e^{-H}$$

• $H = P^2/2 + S(U)$

HMC Steps

- **1** A momentum field P is generated randomly with probability density proportional to $e^{-P^2/2}$
- ② The Hamilton equations are integrated from time t = 0 to some later time τ with the initial fields of P and U to obtain a new field U'
- **3** Apply the Acceptance-Reject step to decide whether to set U_{τ} to U' or keep U, i.e., $U_{\tau} = U$
- Repeat

The above steps correspond to

$$T_0(U \to U') = \frac{1}{\mathcal{Z}_P} \int \mathcal{D}P \, e^{-P^2/2} \prod_{x,\mu} \delta(U'(x,\mu)U(x,\mu))$$

Numerical Integration

Elementary updates for P and U

$$\begin{split} I_P(\varepsilon) : & (P,U) \to (P - \varepsilon F, U) \\ I_U(\varepsilon) : & (P,U) \to (P,e^{\varepsilon P}U) \end{split}$$

Leap-frog integrator:

$$\mathcal{J}(\varepsilon, N) = \{I_P(\varepsilon/2)I_U(\varepsilon)I_P(\varepsilon/2)\}^N$$

where $\varepsilon = \tau/N$

Table of Contents

Introduction

2 Field Transformation

Field-Transformation HMC

Consider
$$U = \mathcal{F}_t(V)$$

Under \mathcal{F}

$$Z = \int \mathcal{D}U e^{-S(U)} = \int \mathcal{D}V \operatorname{Det}[\mathcal{F}_*(V)] e^{-S(\mathcal{F}(V))} = \int \mathcal{D}V e^{-S_{FT}(V)}$$

$$S_{FT} = S(\mathcal{F}_t(V)) - \operatorname{In} \operatorname{Det}\mathcal{F}_*(V)$$

$$\mathcal{F}_*(x, \mu; y, \nu)^{ab}(V) = \theta^a_{x, \mu}(\mathcal{F}_* \hat{\partial}^b_{y, \nu}) = -2\operatorname{tr} \left[\left(\hat{\partial}^b_{y, \nu} U(x, \mu) \right) U(x, \mu)^{-1} T^a \right]$$

Notation:

- $T^a \in \mathfrak{su}(3)$: generators of $\mathfrak{su}(3)$
- $\omega_{U(x,\mu)} = dU(x,\mu)U^{-1}(x,\mu)$: Mauler-Cartan form
- $\theta_{x,\mu}^{a}(v) = (\omega_{U(x,\mu)}(v), T^{a}) = -2\operatorname{tr}\left[\omega_{U(x,\mu)}(v)T^{a}\right] \quad (v \in T_{U(x,\mu)}\mathbb{R}^{4} \times SU(3)^{4})$
- $\partial_{x,\mu}^{a}[f]|_{U} = \frac{d}{dt}f(U_{t})|_{t=0}$ where $U_{t}(y,\nu) = \begin{cases} e^{tT^{a}}U(x,\mu) & \text{if } (y,\nu) = (x,\mu) \\ U(y,\nu) & \text{othersie} \end{cases}$

Field-Transformation HMC

- originally proposed by Luscher [Lüscher, 2010]
- Perfect trivialization: $S_{FT} = 0$
- Transformation via flow $U \to U + \varepsilon Z(U)U + \mathcal{O}(\varepsilon^2) \longrightarrow \dot{U}_t = Z(U_t)U_t$
- Then,

$$S_{FT} = 0 \iff \int_0^t ds \sum_{x,\mu} \{\partial_{x,\mu}^a [Z_s(U)]^a(x,\mu)\}|_{U=U_s} = tS_G(U_t) + C_t$$

• Perfect trivialization is achieved at t = 1

Ansatz:

$$[Z_t(U)]^a(x,\mu) = -\partial_{x,\mu}^a \tilde{S}_t(U)$$

Insert this to the previous equation:

$$\begin{split} \mathfrak{L}_t \tilde{S}_t &= S_G + \dot{C}_t \\ \mathfrak{L}_t &= \sum_{x,\mu} \big\{ \partial_{x,\mu}^a \partial_{x,\mu}^a + t \big(\partial_{x,\mu}^a S_G \big) \partial_{x,\mu}^a \big\} \end{split}$$

- Expand: $\tilde{S}_t = \sum_{k=0}^{\infty} t^k \tilde{S}_t^{(k)}$
- Matching t leads to recursive relations

$$\begin{split} & \mathfrak{L}_{0} \tilde{S}^{(0)} = S_{G} + \dot{C}^{(0)} \\ & \mathfrak{L}_{0} \tilde{S}^{(k)} = -\sum_{x,\mu} \partial_{x,\mu}^{a} S_{G} \partial_{x,\mu}^{a} \tilde{S}^{(k-1)} + \dot{C}^{(k)} \end{split}$$

The solution of the recursion

$$\begin{split} \tilde{S}^{(0)} &= \mathfrak{L}_0^{-1} S_G \\ \tilde{S}^{(k)} &= - \mathfrak{L}_0^{-1} \sum_{x,\mu} \partial_{x,\mu}^a S_G \partial_{x,\mu}^a \tilde{S}^{(k-1)} \end{split}$$

- Approximation:
 - $\tilde{S} \approx \tilde{S}^{(0)}$
 - $S_G = S_W = -\frac{\beta}{6} \sum_{x,\mu \neq \nu} \operatorname{tr}[P_{\mu\nu}(x)]$
 - Plaquette: $P_{\mu\nu}(x) = U_{\mu}(x)U_{\nu}(x+\hat{\mu})U_{\mu}^{\dagger}(x+\hat{\nu})U_{\nu}^{\dagger}(x)$

Then,

$$\begin{split} Z_t(U_t)(x,\mu) &= \mathcal{P}(C(x,\mu)) \equiv \frac{1}{2}(C(x,\mu) - C(x,\mu)^\dagger) \\ &\quad - \frac{1}{6} \text{tr} \left[C(x,\mu) - C(x,\mu)^\dagger \right] \\ \mathcal{P}(M) &= \frac{1}{2}(M - M^\dagger) - \frac{1}{6} \text{tr} \left(M - M^\dagger \right) \\ C(x,\mu) &= \sum_{\nu \neq \pm \mu} \rho_{\mu,\nu} U(x,\nu) U(x+\hat{\nu},\mu) U(x+\hat{\mu},\nu)^\dagger U(x,\mu)^\dagger. \end{split}$$

- Numerical integration
 - discretize the transformation with step of size $\rho \equiv \rho_{\mu\nu}$
 - $m{\circ}$ ho includes a expansion parameter arepsilon
 - ullet The number of integration steps for the discretized trivializing map is set to 1

A single Euler step:

$$U(x,\mu) \to \mathcal{E}_{x,\mu}(y,\nu) = \begin{cases} e^{Z_t(U)(x,\mu)} \, U(x,\mu) & \text{if } (y,\nu) = (x,\mu) \\ U(y,\nu) & \text{otherwise.} \end{cases}$$

- This approximation is cheaper than perfect trivialization yet effective
- The transformation is wavelength-dependent
- Its effect on autocorrelation is also wavelength-dependent

Thank you!

Luscher, M. (2010).

Computational Strategies in Lattice QCD.

In Les Houches Summer School: Session 93: Modern perspectives in lattice QCD: Quantum field theory and high performance computing, pages 331–399.

Lüscher, M. (2010).

Trivializing maps, the Wilson flow and the HMC algorithm. *Commun. Math. Phys.*, 293:899–919.

Rothe, H. J. (2012).

Lattice Gauge Theories.

WORLD SCIENTIFIC, 4th edition.