Effect of FTHMC with 2+1 Domain Wall Fermions on Autocorrelation Times via Master-Field Technique II

S. Yamamoto¹ P. A. Boyle¹ T. Izubuchi¹ L. Jin²

¹Brookhaven National Laboratory

²Department of Physics University of Connecticut

³Department of Physics University of Boston

June 6, 2025

Table of Contents

- Field Transformation
- Simulation Details
- Measurements
- 4 Autocorrelation
- Outlook

Table of Contents

- Field Transformation
- 2 Simulation Details
- Measurements
- 4 Autocorrelation
- Outlook

Review: HMC

Target Distribution

•
$$Z = \int \mathcal{D}U e^{-S(U)} \propto \int \mathcal{D}U\mathcal{D}P e^{-P^2/2} e^{-S(U)} = \int \mathcal{D}U\mathcal{D}P e^{-H}$$

• $H = P^2/2 + S(U)$

HMC

- Momentum Refreshment: A momentum field P is generated randomly with probability density proportional to $e^{-P^2/2}$
- MD: The Hamilton equations are integrated from time t = 0 to some later time τ with the initial fields of P and U to obtain a new field U'

$$\dot{U} = PU$$

$$\dot{P} = -\frac{\partial H}{\partial U} = -\frac{\partial S}{\partial U}$$

• Apply the Acceptance-Reject step to decide whether to update U to U_{τ} or keep U, i.e., $U' = U_{\tau}$

Field-Transformation HMC

With $U = \mathcal{F}_t(V)$,

$$Z = \int \mathcal{D}U e^{-S(U)} = \int \mathcal{D}V \operatorname{Det}[\mathcal{F}_*(V)] e^{-S(\mathcal{F}(V))} = \int \mathcal{D}V e^{-S_{FT}(V)}$$
$$S_{FT} = S(\mathcal{F}_t(V)) - \operatorname{In} \operatorname{Det}\mathcal{F}_*(V).$$

- originally proposed by Luscher for continuous flow [Luscher, 2010]
- perfect trivialization: $S_{FT} = 0$
- Ansatz:

$$\dot{U}_t = Z_t[U_t]U_t$$

• $Z_t(x,\mu) \in \mathfrak{su}(3)$

Field-Transformation HMC

Luscher: approximate the trivializing map by the Wilson flow

$$Z_{t}[U]^{a}(x,\mu) = \partial_{x,\mu}^{a} P_{\mu\nu}(x,\mu)$$

$$= \frac{P_{\mu\nu}(x,\mu) - P_{\mu\nu}(x,\mu)^{\dagger}}{2} - \frac{1}{6} \text{tr} \left[P_{\mu\nu}(x,\mu) - P_{\mu\nu}(x,\mu)^{\dagger} \right]$$

where $P_{\mu\nu}(x,\mu)$ is a sum of plaquettes

$$P_{\mu\nu}(x,\mu) = \sum_{\nu \neq \pm \mu} \rho_{\mu,\nu} U(x,\nu) U(x+\hat{\nu},\mu) U(x+\hat{\mu},\nu)^{\dagger} U(x,\mu)^{\dagger}$$

 \bullet In our work: discretize the transformation with finite step size $\rho \equiv \rho_{\mu\nu}$

$$U(x,\mu) \to \mathcal{E}_{x,\mu}(y,\nu) = \begin{cases} e^{Z_t(U)(x,\mu)} \, U(x,\mu) & \text{if } (y,\nu) = (x,\mu) \\ U(y,\nu) & \text{otherwise.} \end{cases}$$

 The number of integration steps for the discretized trivializing map is set to 1

Numerical Integration

Elementary updates for P and U

$$I_P(\varepsilon):(P,U)\to (P-\varepsilon F,U)$$

 $I_U(\varepsilon):(P,U)\to (P,e^{\varepsilon P}U)$

Leap-frog integrator:

$$\mathcal{J}(\varepsilon, N) = \{I_P(\varepsilon/2)I_U(\varepsilon)I_P(\varepsilon/2)\}^N$$

- Multiple Time-Step Integration:
 - In many cases, $F_0 \gg F_1$
 - We use different integration step sizes for different forces

Table of Contents

- Field Transformation
- Simulation Details
- Measurements
- 4 Autocorrelation
- Outlook

Run Parameters

Lattice Parameters:

- on a lattice of size 32⁴
- $\beta = 2.37$
- with 2 + 1 Domain-Wall fermions of mass $m_l = 0.0047$, $m_s = 0.0186$

HMC Parameters:

- different ρ values: 0.1, 0.112, 0.124
- different gauge step sizes $\delta \tau_G = 1/48, 1/96$
- different fermion step sizes $\delta \tau_F = 1/24, 1/16, 1/12, 1/8$

In the following, we focus on the runs with different flow parameters and $\delta\tau_{\it G}$ but $\tau_{\it F}$ is fixed to 1/24

Statistics

ρ	0.0	0.1	0.112	0.124
$\delta au_G = 1/48$	233	230	188	230
$\delta au_G = 1/96$	401	232	229	229
$\delta au_G = 1/144$	-	230	-	1

Table: The number of configurations for each ensemble after thermalization with $\tau_F = 1/24$

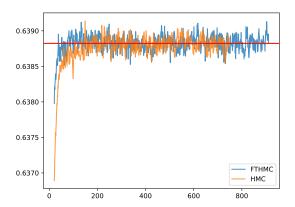
Machine

 Simulation is carried out on Frontier and Andes at Oak Ridge National Laboratory

Table of Contents

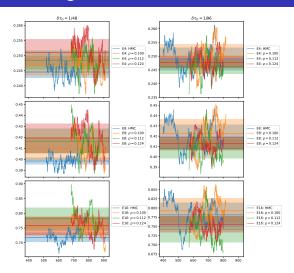
- Field Transformation
- 2 Simulation Details
- Measurements
- 4 Autocorrelation
- Outlook

Plaquettes



- The red line is an expected value of plaquette for this lattice from Ref. [Blum et al., 2016]
- Its value is 0.6388238(37).

Wilson flowed energies



• Comparison of Wilson flowed energy with different ρ values for different flow time (raw) and $\delta \tau_G = 1/48, 1/96$ (column)

Table of Contents

- Field Transformation
- 2 Simulation Details
- Measurements
- 4 Autocorrelation
- Outlook

Autocorrelation

Notation

- Observable: A(x)
- Measurement: $a_i(x)$
- Volume Average: $\langle\!\langle A \rangle\!\rangle = (1/V) \sum_x A(x)$
- Ensemble Average: $a = \langle a_i(x) \rangle = \langle \langle A \rangle \rangle$
- Autocovariance: $\Gamma^V(t) = \langle (\langle a_i \rangle a)(\langle a_{i+t} \rangle a) \rangle$
- Autocorrelation Coefficients (ACC): $\rho^{V}(t) = \Gamma^{V}(t)/\Gamma^{V}(0)$

Estimators:

- $\langle a(x) \rangle \rightarrow \bar{a}(x) = \frac{1}{T} \sum_{i=1}^{T} a_i(x)$
- $\bar{\Gamma}^V(t) = \frac{1}{T-t} \sum_{i=1}^{T-t} (\langle\langle a_i \rangle\rangle \langle\langle \bar{a} \rangle\rangle) (\langle\langle a_{i+t} \rangle\rangle \langle\langle \bar{a} \rangle\rangle)$
- T: length of Markov chain approximating the ensemble

Volume Autocorrelation

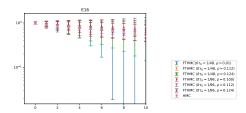


Figure: Autocorrelation coefficient (ACC) as a function of t for Wilson-flowed energy E16.

Error via Madras-Sokal Approximation [Luscher, 2005]:

$$\langle \delta \bar{\rho}^{(V)}(t)^2 \rangle \simeq \frac{1}{N} \sum_{k=1}^{t+\Lambda} \left[\bar{\rho}^{(V)}(k+t) + \bar{\rho}^{(V)}(k-t) - 2\bar{\rho}^{(V)}(k)\bar{\rho}^{(V)}(t) \right]$$

• $\Lambda \ge 100$ gives a reasonable estimate of the error [Luscher, 2005]

Master-Field Technique

- Instead of ACC of the volume average $\langle\!\langle A \rangle\!\rangle = (1/V) \sum_x A(x)$, consider ACC of local observable A(x)
- Subtract the volume average: $A'(x) = A(x) \langle \! \langle A \rangle \! \rangle$
- Due to translational invariance, $\mu = \langle A'(x) \rangle = a a = 0$
- Denote autocovariance of A'(x) at x as $\Gamma'_x(t)$
- Then,

$$\Gamma'_{x}(t) = \langle (a'_{i}(x) - \mu)(a'_{i+t}(x) - \mu) \rangle$$

$$= \langle a'_{i}(x)a'_{i+t}(x) \rangle$$

$$= \langle (a_{i}(x) - \langle a_{i} \rangle)(a_{i+t}(x) - \langle a_{i+t} \rangle) \rangle \equiv \langle \mathcal{O}_{t}^{i}(x) \rangle$$

Master-Field Technique

- Idea: $\langle A(x) \rangle = \langle A(x) \rangle + \mathcal{O}(V^{-1/2})$
- Approximate $\Gamma'_x(t)$ by $\langle\!\langle \Gamma'(t) \rangle\!\rangle$ [Lüscher, 2018]
- Also, $\mathcal{O}_t^i(x) \to \bar{\mathcal{O}}_t(x) \equiv \frac{1}{T-t} \sum_{i=1}^{T-t} \mathcal{O}_t^i(x)$
- Finally, $\rho(t) = \langle \langle \Gamma'(t) \rangle \rangle / \langle \langle \Gamma'(0) \rangle \rangle$

Error via Master-Field Approach

- Need: $Cov[\langle \bar{\mathcal{O}}_s \rangle, \langle \bar{\mathcal{O}}_t \rangle] \equiv \langle [\langle \bar{\mathcal{O}}_s \rangle \langle \mathcal{O}_s \rangle] [\langle \bar{\mathcal{O}}_t \rangle \langle \mathcal{O}_t \rangle] \rangle =$ $\frac{1}{V} \sum_{V} \langle [\bar{\mathcal{O}}_{s}(y) - \langle \mathcal{O}_{s} \rangle] [\bar{\mathcal{O}}_{t}(0) - \langle \mathcal{O}_{t} \rangle] \rangle \equiv \frac{1}{V} \sum_{V} C_{st}(y)$ [Bruno et al., 2023]
- Approximate $C_{st}(y)$ by

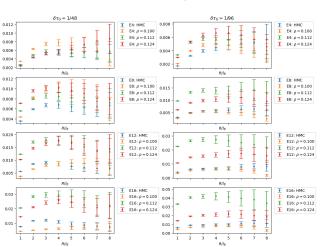
$$\langle \langle \mathcal{C}_{st}(y) \rangle \rangle = \frac{1}{V} \sum_{x} \delta \bar{\mathcal{O}}_{s}(x+y) \delta \bar{\mathcal{O}}_{t}(x), \ \delta \bar{\mathcal{O}}_{t}(x) \equiv \bar{\mathcal{O}}_{t}(x) - \langle \langle \bar{\mathcal{O}}_{t} \rangle \rangle$$

- Define $C_{st}(|y| \le R) \equiv \sum_{|y| < R} C_{st}(y)$
- Determine the value of R s.t. $C_{st}(|y| \le R)$ saturates
- Truncate the sum in $Cov[\langle (\bar{\mathcal{O}}_s)\rangle, \langle (\bar{\mathcal{O}}_t)\rangle]$ beyond R_{sat}

$$\begin{aligned} \operatorname{Var}[\rho(t))] &= (\rho(t))^2 \left(\frac{\operatorname{Var}[\langle\!\langle \Gamma(t) \rangle\!\rangle]}{\langle\!\langle \bar{\Gamma}(t) \rangle\!\rangle^2} + \frac{\operatorname{Var}[\langle\!\langle \Gamma(0) \rangle\!\rangle]}{\langle\!\langle \bar{\Gamma}(0) \rangle\!\rangle^2} \right. \\ &\left. - 2 \frac{\operatorname{Cov}[\langle\!\langle \bar{\Gamma}(t) \rangle\!\rangle, \langle\!\langle \bar{\Gamma}(0) \rangle\!\rangle]}{\langle\!\langle \bar{\Gamma}(t) \rangle\!\rangle \langle\!\langle \bar{\Gamma}(0) \rangle\!\rangle} \right) \end{aligned}$$

June 6, 2025

Error via Master-Field Approach



Master-Field Error for 2⁴-Blocked ACC (E Density) at t=5

Figure: R: Summation Radius, b: block size

Error via Binning

- Divide the MC into several bins
- Compute $\langle \langle \bar{\Gamma}(t) \rangle \rangle$ on each bin
- ullet The estimator of the error of $\langle\!\langle ar{\Gamma}(t) \rangle\!\rangle$ is standard deviation of the mean
- Lattice-correlation is irrelevant

Autocorrelation for Local Quantities

Master-Field ACC for 24-Blocked E Density

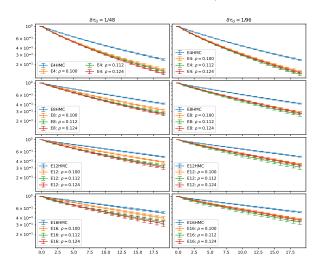


Figure: Autocorrelation based on Master-Field technique

Autocorrelation for Local Quantities

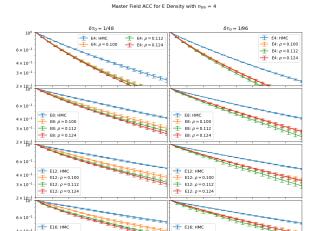


Figure: Autocorrelation based on binning method

12.5 15.0 17.5 20000

F E16: $\rho = 0.112$

 $\frac{}{}$ E16: ρ = 0.124

12.5

15.0 17.5 20.0

3 × 10-1 E16: p = 0.112

 2×10^{-3}

 $\frac{}{}$ E16: ρ = 0.124

Autocorrelation Times

Estimates of exponential autocorrelation times $\tau_{\rm exp}$ computed by fitting $e^{-t/\tau_{\rm exp}}$ to the ACC for different Wilson flow time τ_W , ρ , and $\delta \tau_G$ values:

ρ	$ au_W$ = 4	$ au_W$ = 16
0.0	14.28	27.822
0.100	11.2	21.68
0.112	10.87	19.2
0.124	10.14	17.68

Table: Fixed $\delta \tau_G = 1/48$, varied Wilson flow time τ_W

Autocorrelation Times

The ratios of $\tau_{\rm exp}(\rho$ = 0.0, $\delta\tau_{\rm G}$ = 1/48) for HMC to $\tau_{\rm exp}$ with other HMC parameters:

ρ	τ_W = 4	$ au_W$ = 16
0.100	1.275	1.2832
0.112	1.313	1.4487
0.124	1.408	1.5736

Table: Fixed $\delta \tau_G = 1/48$, varied Wilson flow time τ_W

Code Optimization

- Overhead of field transformation mainly comes from a subroutine logDetJacobianForceLevel
- The computer time for this subroutine is reduced by a factor of around 4.

Figure: Snippet of tracing output from Perfetto for logDetJacobianForceLevel before optimization

Figure: Snippet of tracing output from Perfetto for logDetJacobianForceLevel after optimization

Code Optimization

 As a result, the additional cost due to field transformation is reduced by a factor of 4 and now occupies only 2.2% of the total computer time

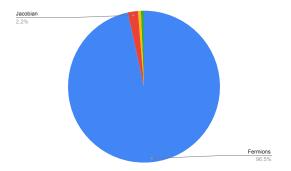


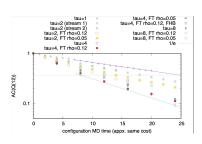
Figure: Breakdown of computer time from various components of FTHMC on a thermalized configuration

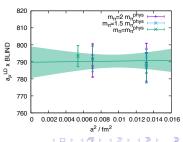
Table of Contents

- Field Transformation
- 2 Simulation Details
- Measurements
- 4 Autocorrelation
- Outlook

Summary and Outlook

- FTHMC reduces autocorrelation times around 1.5x compared to HMC
- Longer trajectory length + field transformation reduced autocorrelation time around 3.5x
- Enabled simulation at finer lattice spacings, huge volume (3.5 GeV, $128^3 \times 288$ for Iwasaki gauge action and 2+1 DWF)
- ⇒ continue with gauge + fermion action: big impact on physics program of RBC-UKQCD
- Basis of INCITE computing proposal for next 3 years





Summary and Outlook

- Master-Field technique allows us to measure autocorrelation coefficients based on a small number of configurations
- Generate ensemble with different parameters (beta, the number of trivializing steps, etc...) for tuning
- FTHMC showed potential to reduce autocorelation time for topologial charge
- However, there are a number of parameters for FTHMC to tune for optimal performance
- Better understanding of why and how FTHMC is effective is needed

Thank you!

Blum, T. et al. (2016).

Domain wall QCD with physical quark masses.

Phys. Rev. D, 93(7):074505.

Bruno, M., Cè, M., Francis, A., Fritzsch, P., Green, J. R., Hansen, M. T., and Rago, A. (2023).

Exploiting stochastic locality in lattice QCD: hadronic observables and their uncertainties.

JHEP, 11:167.

Luscher, M. (2005).

Schwarz-preconditioned HMC algorithm for two-flavour lattice QCD. *Comput. Phys. Commun.*, 165:199–220.

Luscher, M. (2010).

Trivializing maps, the Wilson flow and the HMC algorithm.

Commun. Math. Phys., 293:899-919.

31/35

Wilson Flow

Ansatz:

$$[Z_t(U)]^a(x,\mu) = -\partial_{x,\mu}^a \tilde{S}_t(U)$$

Insert this to the previous equation:

$$\begin{split} \mathfrak{L}_t \tilde{S}_t &= S_G + \dot{C}_t \\ \mathfrak{L}_t &= \sum_{x,\mu} \big\{ \partial_{x,\mu}^a \partial_{x,\mu}^a + t \big(\partial_{x,\mu}^a S_G \big) \partial_{x,\mu}^a \big\} \end{split}$$

- Expand: $\tilde{S}_t = \sum_{k=0}^{\infty} t^k \tilde{S}_t^{(k)}$
- Matching t leads to recursive relations

$$\begin{split} & \mathfrak{L}_{0} \tilde{S}^{(0)} = S_{G} + \dot{C}^{(0)} \\ & \mathfrak{L}_{0} \tilde{S}^{(k)} = -\sum_{x,\mu} \partial_{x,\mu}^{a} S_{G} \partial_{x,\mu}^{a} \tilde{S}^{(k-1)} + \dot{C}^{(k)} \end{split}$$

Wilson Flow

The solution of the recursion

$$\begin{split} \tilde{S}^{(0)} &= \mathfrak{L}_0^{-1} S_G \\ \tilde{S}^{(k)} &= -\mathfrak{L}_0^{-1} \sum_{x,\mu} \partial_{x,\mu}^a S_G \partial_{x,\mu}^a \tilde{S}^{(k-1)} \end{split}$$

- Approximation:
 - $\tilde{S} \approx \tilde{S}^{(0)}$
 - $S_G = S_W = -\frac{\beta}{6} \sum_{x,\mu \neq \nu} \text{tr}[P_{\mu\nu}(x)]$
 - Plaquette: $P_{\mu\nu}(x) = U_{\mu}(x)U_{\nu}(x+\hat{\mu})U_{\mu}^{\dagger}(x+\hat{\nu})U_{\nu}^{\dagger}(x)$

Wilson Flow

Then,

$$\begin{split} Z_t(U_t)(x,\mu) &= \mathcal{P}(C(x,\mu)) \equiv \frac{1}{2}(C(x,\mu) - C(x,\mu)^\dagger) \\ &- \frac{1}{6} \text{tr} \left[C(x,\mu) - C(x,\mu)^\dagger \right] \\ \mathcal{P}(M) &= \frac{1}{2}(M - M^\dagger) - \frac{1}{6} \text{tr} \left(M - M^\dagger \right) \\ C(x,\mu) &= \sum_{\nu \neq \pm \mu} \rho_{\mu,\nu} U(x,\nu) U(x+\hat{\nu},\mu) U(x+\hat{\mu},\nu)^\dagger U(x,\mu)^\dagger. \end{split}$$

- Numerical integration
 - discretize the transformation with step of size $\rho \equiv \rho_{\mu\nu}$
 - $m{\bullet}$ ho includes a expansion parameter arepsilon
 - \bullet The number of integration steps for the discretized trivializing map is set to 1

Acceptance Rates

	НМС	ρ = 0.1	ρ = 0.112	ρ = 0.124
$\delta \tau_G = 1/48$	0.929(6)	0.944(5)	0.935(6)	0.924(6)
$\delta \tau_G = 1/96$	-	0.956(4)	0.944(5)	0.94(5)

Table: $\langle P_{\rm acc} \rangle$ for runs with and without FT.