

FY2026 NPP LDRD Type B Pre-Proposal

Development of a Generic 4D Telescope Platform

Principal investigator:

Gabriele D'Amen [Physics Department]
Shaochun Tang [Physics Department]

FY2025 NPP LDRD Type B Pre-Proposal

Proposal title: Development of a Generic 4D Telescope Platform **Primary Investigator:** Gabriele D'Amen (PD) Shaochun Tang (PD) Indicate if this is a cross-directorate proposal: Yes No X If yes, identify other directorates/organizations: **Proposal Term:** From: 10/1/2025 To: 9/30/2027 (2 yrs)

FY2025 NPP LDRD Type B Pre-Proposal

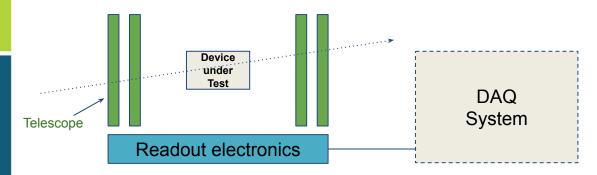
Proposal title and brief abstract: Development of a Generic 4D Telescope Platform

We will develop a platform for readout of 4D sensors (Scintillator detectors/AC-LGAD) based on CaRIBOu technology (modular readout). This system can be used as a **powerful**, **portable**, **and affordable general purpose telescope** able to provide high time- and space- resolution particle detection in laboratory and at test beams. By adapting the capabilities of CaRIBOu software and firmware environment, this platform will provide **a plug-and-play way to add 4D tracking capabilities** to a wide range of experiments and applications

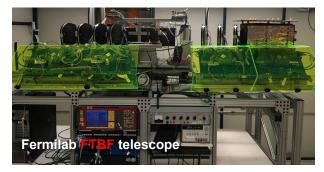
Program: HEP

Return on investment:

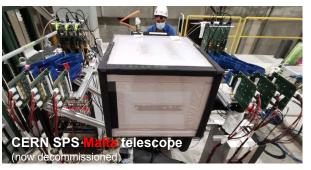
- Potential for BNL to produce the device (think of FELIX...)
- Saves resources O(10⁴-10⁵ USD)/time/personpower for projects requiring precise 4D tracking (HEP, NP, Medical...)
- Leads to new collaborations within RDC3/RDC5 (US) and DRD3/DRD7 (EU)
- Strengthen BNL position as one of the leaders of both fast-timing silicon technology and readout electronics for HEP/NP applications
- PI is eligible for Early Career Award


Broader impact on the activities at the laboratory:

within our group:
 BNL aims to take a leadership role in future HEP colliders (see past awarded LDRDs)

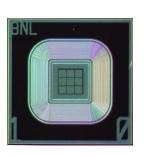

within our department: Huge impact on our EIC-oriented silicon development

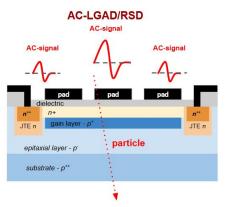
Total planned funding per year in FY26 and FY27: 250k USD/yr (500k in total)


Motivation

- Characterization of components and devices in lab and at testbeams often limited by the availability and cost of particle detectors
- All projects involving any measurement of particle Position and/or Time-of-Arrival require a dedicated Telescope setup
 - o Resources, time and personpower spent on 4D reconstruction
- Telescope systems are sometimes installed permanently or semi-permanently at beam facilities (cost in the order of M\$)
 - Often based on old (obsolete?) technologies (leftover from CERN experiments...)
 - Wide heterogeneity of capabilities, costs, availability, interfaces with user...
 - Limits already scarce choice in feasible testbeam facilities
- We want to make a Powerful (50 ps time resolution/<10um space resolution), Affordable (<20k USD/telescope layer), Standardized, Portable system for us and external collaborators to use

Technological concept

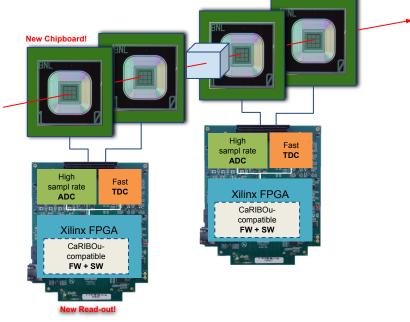

Goal


Design a powerful, portable, and affordable general purpose telescope able to provide high time- and space- resolution particle detection in laboratory and at test beams

AC-LGAD sensors are one of the candidates to achieve excellent 4D performances

- Sensors and expertise already available at BNL
- Time resolution: ~30ps
- Space resolution: < 10um</p>

Due to the peculiar nature of **signal formation and sharing** in AC-LGADs, **new readout electronics is needed** with high speed and high resolution ADCs and FPGA resources


Technological concept

Deliverable

We will design and develop a new hardware platform (**chipboard + readout**) for readout of Ultra-fast 4D sensors compatible with CaRIBOu software and firmware

Readout system

- CaRIBOu: modular readout for R&D (developed at BNL)
- By adapting the capabilities of CaRIBOu software and firmware environment, this platform will provide a plug-and-play way to add 4D tracking capabilities to a wide range of experiments and applications
- System equipped with Xilinx FPGA, high sampling rate (~ 10 GS/s) channels of 8 bit/12 bit ADC to sample the amplitude of AC-LGAD signals and fast TDC for particle time-of-arrival measurement
- Board will use off-the shelf components and provide robust data acquisition capabilities running on a dedicated SoC

Research milestones

FIRST YEAR					
Q1	Q2	Q3	Q4		
Architecture discussion and preliminary tests	Hardware development				
	Firmware development				
			Software development		

SECOND YEAR				
Q5	Q6	Q7	Q8	
Software development	Integration and preparation for test-beam	Test beam (at Tandem/NSRL)	Data analysis	
Lab tests				

Personnel

- Shaochun Tang
 - Hardware & Firmware design
- Gabriele D'Amen
 - o Software development & Characterization in lab
- PostDoc
 - Firmware, Software development and system integration
- Technician
 - Sensor characterization

Procurements

- Xilinx FPGA
- ADCs
- PCBs

Summary Slide

Motivation

 Widespread need (especially looking towards EIC/FCC/Muon Collider) for reliable, powerful, user-friendly 4D tracking system

 4D tracking at test-beams and lab expensive and time-consuming (We don't want to re-invent the wheel every time)

Existing setups based on older technologies

Return-on-Investment

- Saves resources/time/personpower
- Leads to new collaborations within RDC (US) and DRD (EU)
- Strengthen BNL position as leader of fast-timing detectors & readout electronics
- Potential for BNL to produce the device (think of FELIX...)
- PI is eligible for Early Career Award

Deliverables

The blueprint for a plug-and-play 4D telescope, including:

- PCB/hardware design
- Firmware
- Data Acquisition software

RSD/AC-LGAD BNL expertise in ultra-fast 4D sensors New 4D **Telescope** Platform! **CaRIBOu** BNL expertise in readout electronics

Present the work at international conferences