INTT Publication Plan

RIKEN/RBRC Itaru Nakagawa

Proposed plan for INTT Publications

Topics	Target Journal	Leading Author	Timeline	Remaining Issues
Bus Extender ✔ (Electric)	The Japan Institute of Electronics Packaging	Takashi Kondo (TIRI)	2022/May → published Aug. 2022	To be announced from Takashi later
2021 Beam Test✔	ELPH Ann. Rprt.	Genki/Cheng- Wei/Yuka	2022/Winter	Efficiency (Thick tail by MC, BG contamination)
2021 Beam Test	NIM		2023/Winter	
Bus Extender (Mechanical)	NIM	Takashi	2023/Winter	Final evaluation of the yield rate
INTT Ladder	NIM	ltaru	2023/Winter	Mirco-Coax Conversion Cable/(Commisioning*)
INTT Barrel	NIM	Itaru/Rachid	2024/Summer	Barrel

220421_StuffMeeting.pptx

Plan discussed in INTT Stuff meeting on April 21, 2022

Proposed plan for INTT Publications (Update)

Topics	Target Journal	Leading Author	Timeline	Remaining Issues
Bus Extender ✔ (Electric)	The Japan Institute of Electronics Packaging	Takashi Kondo (TIRI)	2022/May → published Aug. 2022	To be announced from Takashi later
2021 Beam Test✔	ELPH Ann. Rprt.	Genki/Cheng- Wei/Yuka	2022/Winter	ADC distribution, Resolution, Efficiency, cluster size
2021 Beam Test	NIM		2023/Winter	
Bus Extender (Mechanical)	NIM	Takashi	2023/Winter	Final evaluation of the yield rate
INTT Ladder	NIM	Itaru	2025/Winter	Ladder, BEX, CC, ROC
INTT Barrel	NIM	Itaru/Rachid	2024/Summer	Barrel

220421_StuffMeeting.pptx

Plan discussed in INTT Stuff meeting on April 21, 2022

Bus Extender Published Paper \checkmark

Kondo et al.: Development of Long and High-Density Flexible Printed Circuits (1/10)

[Technical Paper]

Development of Long and High-Density Flexible Printed Circuits

Takashi Kondo^{1*}, Kohei Fujiwara¹, Takashi Hachiya^{2,3}, Hikaru Imai⁴, Miu Morita², Itaru Nakagawa^{3,4},

100

80

60 40 20

perature [°C]

Naoyuki Sato⁵, Masato Tsuruta⁴, and Daisuke Yanagawa⁵

¹ Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10, Aomi, Koto, Tokyo 135-0064, Japan

² Nara Women's University, Kitauoya-Higashimachi, Nara 630-8506, Japan

³ RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan

⁴ Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
 ⁵ Hayashi-Repic Co., Ltd., 1-28-3, Kitaotsuka, Toshima, Tokyo 170-0004, Japan

(Received August 3, 2021; accepted July 7, 2022, published August 4, 2022)

- Only Japanese authors (Students involved in R&D ~2021)
- Focus on electrical property of the bus extender
- Mechanical property such as radiation hardness or mass production technologies are to be discussed in other NIM paper.

Abstract

The super Floncering High-Energy Nuclear Interaction eXperiment (ePHENN), which aims to unravel the mysteries of the creation of the universe, is scheduled to be launched in 2023 at Brookhaven National Laboratory, USA, using the relativistic heavy in collider. As a stypical high-energy particle accelerator-based experiment, the collision area of aPHENNs is to be tightly occupied with various radiation detectors, requiring a minimal special budget to run cables and transmit massive signals generated by these detectors to downstream electronics for data processing located in a remote distance. Accordingly, a long, high signal line-density cable has been developed based on the flexible printed circuit (PCO technology, FPC comprises multilayers and has extraordinarily long and thin transmission lines. Liquid crystal opymer was employed to supress losses in transmission lines. Electrical baracteristics were evaluated using Sparameters, time domain reflectometry, and eyediagrams. Furthermore, we have developed manufacturing technology to achieve high-precision microfibrication and improved reliability, which has been demonstrated in peel strength and thermal shock tests. FPC is currently in the mass production plane.

Keywords: FPC, LCP, Sparameter, TDR, Eye-diagram, Peel Strength, Through-hole Plating, Radiation Detector Cable

Transactions of The Japan Institute of Electronics Packaging Vol. 15, 2022

To verify that the square-shaped digital signal can be transmitted to a receiver with minimum distortion, the Fig. 5 FPC prototype

Acknowledgement

The authors thank Mr. H. Yanami, Mr. Y. Yanami, Mr. H. Takahashi, and Mr. K. Matsumoto from Print Electronics Laboratory Co., Ltd., and Mr. T. Miyazaki from Taiyo Manufacturing Co., Ltd., for their tremendous support.

Coarse introduction of INTT $\!\!\!\!\!\!\!\!\!\!\!\!\!\!$

2021 Beam Test Results 🗸

(ELPH Experiment : #2984)

Performance evaluation of the Intermediate Tracker for sPHENIX

G. Nukazuka¹, C.W. Shih², Y. Sugiyama³, Y. Akiba¹, H. En'yo^{1,4}, T. Hachiya³,
S. Hasegawa⁵, M. Hata³, H. Imai^{4,6}, M. Morita³, I. Nakagawa^{1,4},
Y. Nakamura⁶, G. Nakano⁶, Y. Namimoto³, R. Nouicer⁷, M. Shibata³,
M. Shimomura³, R. Takahama³, K. Toho⁸, M. Tsuruta⁸, and M. Watanabe³

¹RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

²Department of Physics, and Center of High-energy and High-field Physics, National Central University, Chungli, Taiwan

³Nara Women's University, Kita-uoya Nishi-machi Nara 630-8506, Japan
⁴RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan
⁵Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195, Japan

⁶Physics Department, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501,

Japan

⁷Brookhaven National Laboratory, Upton, New York 11973
⁸Research Center for Electron Photon Science, Tohoku University, Sendai, 982-0826

Three leading authors: Genki, Cheng-Wei, Yuka for their major contribution to the analysis

§2. INTT

INTT is a silicon strip barrel detector consisting of two layers of silicon strip sensors surrounding the collision point seven to ten centimeters away (Figure 1). Hits detected by this detector are used not only for interpolation of tacking between MVTX and TPC but also bunch-crossing identification to suppress event-pileup background thanks to the best timing resolution of all tracking detectors in sPHENIX. 24 or 32 INTT ladders form the inner and outer layers. The INTT ladder (Figure 2) consists

Fig.1. A half part of the INTT barrel. The inner and the outer barrels consist of 24 and 32 INTT ladders, respectively. The red box indicates an INTT ladder.

Fig.2. The INTT ladder consists of two types of silicon sensors, FPHX chips, High-Density Interconnect cable, and CFC stave. The sensors are divided into 10 or 16 cells. The silicon cells have 128 strips with 78 µm width and 320 µm thickness. The x-, y-, and z-axes in the test beam experiment are also shown.

position, as we expected. In the experiment, the runs with different beam-spot positions were conducted. The efficiency from the run is shown on the right-hand side of Figure 10. The detection efficiency was over 99% at the edge. Therefore, the performance of the INTT ladder was excellent over the column.

Fig.10. The detection efficiency as a function of the track position. (Left) The beam spot is in the middle. (Right) The beam spot aligns with the edge. The error bars indicate the statistic uncertainties.

The energy deposit curve as a function of DAC value. Fitting to the distribution with the sum (red) of a Landau-Gaussian convolution function (dotted blue) and an exponential function (dashed green) is also shown.

Ladder NIM Status

The Performance of sPHENIX Intermediate Silicon Strip Ladder*

Y. Akiba^{a,b}, H. Aso^{g,a}, J. T. Bertaux^{i,b}, D. Cacace^c, K. Cheng^{d,b}, H. Enyo^{a,b}, T. Hachiya^{e,b}, S. Hasegawa^f, M. Hata^{e,b}, TT. Ichino^{g,a}, H. Imagawa^{g,a}, H. Imai^{g,a,b}, M. Isshiki^e, Y. Kawashimag.a, T. Kondo^h, C. Kuo^d, C. Kureha^e, H.-S. Li^d, R.-S. Luⁱ, E. Mannel^c, H. Masudag.a, G. Mitsuka^b, M. Morita^{e,b}, I. Nakagawa^{a,b,*}, Y. Nakamura^{g,a}, G. Nakano^{g,a}, Y. Namimoto^{e,b}, D. Nemoto^{g,a}, S. Nishimori^e, R. Nouicer^e, G. Nukazuka^b, R. Pisani^e, M. Shibata^{e,b}, C. Shih^{d,b}, K. Shiina^{g,a}, M. Shimomura^e, M. Stojanovic^{i,b}, K. Sugino^e, Y. Sugiyama^e, A. Suzuki^{e,b}, R. Takahama^{e,b}, W.-C. Tang^{d,b}, T. Todoroki^b, T. Tsuruta^{g,a}, Y. Yamaguchi^b, M. Watanabe^{e,b}, X. Weiⁱ and R. Xiaoⁱ

"RIKEN, Nishina Center for Accelerator-Based Science,, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan ^bRIKEN BNL Research Center, 20 Pennsylvania Avenue, Upton, 11973, NY, U.S.A. ^cBrookhaven National Laboratory, 20 Pennsylvania Avenue, Upton, 11973, NY, U.S.A. ^dNational Central University, Department of Physics, ..., Taiwan "Nara Women's University, Department of Mathematical and Physical Sciences, ..., Japan Japan Atomic Energy Agency, ..., Japan Rikkvo University, Department of Physics, . . . , Japan h Tokyo Metropolitan Industrial Technology Research Institute, ..., Japan Purdue University, Department of Physics and Astronomy, ..., U.S.A. ¹National Taiwan University, Department of Physics, ..., U.S.A.

ARTICLE INFO

ABSTRACT

Keywords RHIC SPHENIX INTT Silicon Detector

A new silicon detector has been developed to provide the sPHENIX experiment with precise charged particle tracking for central rapidity. sPHENIX is a new detector at the Relativistic Heavy Ion Collider (RHIC) in the Brookhaven National Laboratory, and will take first physics data in early 2023. The intermediate silicon tracker (INTT) is aimed to be installed in sPHENIX of the Relativistic Heavy Ion Collider (RHIC).

1. Introduction

sPHENIX is a new detector at the Relativistic Heavy Ion Collider (RHIC) in the Brookhaven National Laboratory, and will take first physics data in early 2023. The sPHENIX experiment will collect high statistics protonproton, proton-nucleus and nucleus-nucleus data, enabling state-of-the-art studies of jet modification, upsilon suppression and open heavy flavor production to probe the microscopic nature of the strongly-coupled Quark Gluon Plasma complementaly to thoese measurements from the LHC experiments, and will allow a broad range of cold QCD studies. The sPHENIX detector will provide precision vertexing, tracking and electromagnetic and hadronic calorimetry in the central neudoranidity region lal < 11 with tracker (INTT) and a time projection chamber (TPC). The calorimeter stack includes a tungsten/scintillating fiber electromagnetic calorimeter (EMCAL) and a steel/scintillator tile hadronic calorimeter (HCAL), divided into inner and outer parts. The inner HCAL sits inside a 1.5 T superconducting solenoid, which was obtained from the decommissioned BaBar detector. In this talk, I will introduce physics goal of the sPHENIX experiment and various detector technologies.

2. Detector Overview

The INTT consists of 56 ladders, it is responsible for measuring in the position and the tim- ing of charged partialaa

- Author list: INTT collaboration up to ~ 2022 . (To be updated to ~2023 list?).
- Scope of the Paper
 - Design of the ladder.
 - Excluding the beam test performance.
 - Barrel is not included. No 1008 commissioning neither.
- Under development by Itaru in overleaf

https://www.overleaf.com/projec t/63680cb8918e6f1961ae3972

Ladder NIM Status

Contents

- Introduction
- HPK Silicon Sensor
- FPHX Chip (short ver.)
- HDI
- Carbon Fiber Stave
- Bus Extender
- Conversion Cable
- ROC + Felix

Focus

- Dimensions
- Channels
- Structures
- Electric Properties

$$\frac{dN}{deta} Physics Paper$$

$$\frac{dN_{particle}}{d\eta} = \frac{1}{N_{evt}} \cdot \frac{1}{\Delta \eta} \cdot N_{particle}(\eta)$$

$$N_{particle}(\eta) = \frac{(N_{hits} - N_{bg})}{\varepsilon_{acc} \cdot \varepsilon_{eff}} \text{ for each } \eta \text{ range}$$
Signal extraction from data
$$(N_{hits} - N_{bg}) \cong N_{hits} \cdot f_{bkg}$$
Data analysis
$$\cdot N_{hits} = Ntracks \text{ or Nhits } for each \eta \text{ bin}$$

$$\cdot \eta = track/cluster \text{ position } from (X-Y-Z)-vertex}$$

$$\cdot N_{bg} = estimate BG \text{ using } data \text{ and } BG$$

$$\cdot \text{ Random BG and BG from decay (long-lived)}$$

- if relative fraction of S/N is known, It is OK
- Data QA is necessary ٠

 ε_{eff} : Ideally to be evaluated by 1008 barrel from the commissioning. This is not easy with only 2 INTT layers. One idea is to quote 99.6% from published 2021 beam test NIM.

 \rightarrow NIM should be published before dN/d η paper

tector acceptance and efficiency

$$\varepsilon_{acc} \cdot \varepsilon_{eff}$$

(SIM)

- an be determined with hot&dead and alignment.
- ccupancy effect (by multiplicity) needs to be udied with centrality
 - Good to check it by data

Scope for the Barrel NIM

Contents

- Introduction
- Barrel
- LV/Bias power system
- Cooling System and Performance
- ROC
- Felix
- RC-DAQ

Beam Commissioning

- # of live channels
- Timing resolution
- DAC Scan
- Signal to noise ratio
- Efficiency
- Clustering
- Tracklet
- Z-vertex reconstruction performance