





# **Beam Instability Experiments**

Alexei Blednykh L2 System Manager WBS 6.12 Pre-Operations

APEX Workshop 2025 January 22, 2025

**Electron-Ion Collide** 

#### Outline

- Longitudinal Space Charge
- Particle Tracking Simulations at Injection Energy, 23.8 GeV
- Haissinski Equilibrium
- APEX on Longitudinal Instabilities in RHIC
- Summary

# **APEX** and **EIC**

- **EIC** rings (RCS, ESR, HSR) are considered high-risk from an impedance standpoint.
  - Insufficient step size in impedance calculations can affect high-frequency results.
  - Limited computational resources impact wakefield and impedance simulations for some geometries.
  - Certain theoretical models do not fully describe or under/overestimate the collective effects of accelerators.
  - Particle tracking simulations with all wakefields (or impedances) are the most reliable way to estimate instability thresholds.
  - The Impedance budget is designed to ensure that the instability threshold is at least twice the required single-bunch current.

#### • RHIC

• The longitudinal impedance of yellow and blue rings are experimentally measured,  $ImZ/n = 5.4 \Omega$  and  $ImZ/n = 1.5 \Omega$ , respectively.

## **HSR Beam Parameters At Injection Energy**

| Energy, E (GeV)                            | <i>E</i> (GeV) 23.8  |       |  |  |  |
|--------------------------------------------|----------------------|-------|--|--|--|
| Circumference, $C(m)$                      | ( <i>m</i> ) 3833.93 |       |  |  |  |
| Lorentz Factor, $\gamma_0$                 | 25.37                |       |  |  |  |
| Transition Energy, $\gamma_t$              | 22.3                 |       |  |  |  |
| Energy Spread, $\sigma_\delta$             | 6.4x10 <sup>-4</sup> |       |  |  |  |
| RF System, 24.6 MHz (h=315), $V_{RF}$ (MV) | 0.040                |       |  |  |  |
| Bunch Length, $\sigma_{	au}$ (ns)          | 3.003                |       |  |  |  |
| Cooling                                    | Before               | After |  |  |  |
| Vertical Beam Size, $\sigma_y$ (mm)        | 1.9                  | 0.66  |  |  |  |
| Horizontal Beam Size, $\sigma_{x}$ (mm)    | 1.8                  | 0.82  |  |  |  |

AGS Round Beam : $\varepsilon_{x,y}$  = 2.5e-6 /  $\gamma_0$  = 98.5 nmAfter Cooling: $\varepsilon_x$  = 0.5e-6 /  $\gamma_0$  = 19.7 nm $\varepsilon_y$  = 0.3e-6 /  $\gamma_0$  = 11.8 nmAverage Betta Functions: $\beta_x$  = 34.5 m &  $\beta_y$  = 36.6 m

| Average Current, $I_{av}$ (A)                                       | 1                    |
|---------------------------------------------------------------------|----------------------|
| Number of Bunches, M                                                | 290                  |
| Single Bunch Current, $I_0 = \frac{Ne}{T_0}$ (mA)                   | 3.5                  |
| Num. of protons per bunch, N                                        | 2.8x10 <sup>11</sup> |
| Bunch Charge, Ne (nC)                                               | 44.8                 |
| Peak Bunch Current, $I_p = \frac{Ne}{\sqrt{2\pi}\sigma_{\tau}}$ (A) | 6                    |



- $b_{x,arc}$ = 32 mm
- $b_{y,arc} = 24 \text{ mm}$
- Straight Sections (L=953.9 m)
  - $b_{x,arc} = 60 \text{ mm}$
  - *b<sub>y,arc</sub>* = 60 mm
- Average over L=3833.93 m
  - $b_{x,ave} = 39 \text{ mm}$
  - $b_{y,ave} = 33 \text{ mm}$



# Beam Stability At Injection Energy 23.8 GeV

Theory predicts that the beam is longitudinally unstable at 23.8 GeV energy for the space charge impedance of ImZ/n=2.5 Ω and geometric impedance of ImZ/n= 5.4 Ω (A. Burov – Longitudinal Loss of Landau Damping).



 $eSI = 1.6 \times 10^{-19};$  $c = 3 \times 10^{10}$ ; C0 = 383 389.0; (\* circumference \*)  $R\Theta = C\Theta / (2\pi);$  $T\Theta = C\Theta / c;$ xt = 23.12;  $\gamma = 25.4;$  $\eta = \gamma t^{-2} - \gamma^{-2};$  $Qs = 1.3 \times 10^{-4};$ Nb = 2.8 × 10<sup>11</sup>; (\*per bunch\*) Ib = Nb eSI / T0; (\* single bunch avarage current, Amperes\*) enh = 0.6 × 10<sup>-4</sup>; (\* emit norm hor after cool, cm\*)  $\epsilon h = \epsilon nh/\gamma$ : env = 0.3 × 10<sup>-4</sup>: (\* emit norm ver after cool, cm\*)  $\epsilon v = \epsilon n v / \gamma$ ; βa = R0 / γt; (\*average beta function \*)  $\sigma v = \sqrt{\epsilon v \beta a}$ ;  $\sigma h = \sqrt{\epsilon h \beta a}$ ; Print["ov=", 10 ov, " mm"]  $dpp = 6.4 \times 10^{-4}$ ; (\* dp/p rms\*)  $\sigma s = 70.0$ ; (\* rms bunch length, cm\*)

# Long. Space Charge Impedance And Wakefield

• Longitudinal Space Charge Impedance<sup>1</sup>

$$Z_{||}(\omega) = i \frac{S\omega}{c^2}, \text{ where } S = \frac{2C}{\gamma_0^2} \left( ln \frac{b}{\sigma} + \frac{1}{2} \right)$$
$$Z_{||}(\omega) = -i \frac{\omega}{c} \frac{Z_0}{2\pi} \frac{C}{\gamma_0^2} \left( ln \frac{b}{\sigma} + \frac{1}{2} \right),$$

where **b** and  $\sigma$  are the radius of the vacuum chamber and beam, **C** is the ring circumference,  $\gamma_0$  is the Lorentz factor and  $Z_0$  is the impedance of free space

Longitudinal Space Charge Wakefield<sup>1,2</sup>

$$w(z) = S\delta'(z) - \text{point particle}$$
$$w_c(z) = S\lambda'(z) - \text{pseudo-Green's function}$$
$$\lambda(z) = \frac{1}{\sqrt{2\pi}\sigma_s} \exp(-z^2/2\sigma_s^2)$$

Panageotis Baxevanis

$$w_{c}(z) = -\frac{Z_{0}c}{(2\pi)^{3/2}} \frac{C}{\gamma_{0}^{2}\sigma_{s}} \left( ln\frac{b}{\sigma} + \frac{1}{2} \right) \frac{z}{\sigma_{s}^{2}} \exp(-z^{2}/2\sigma_{s}^{2})$$

Electron-Ion Collider APEX Workshop 2025





[1] A. Chao's Book[2] P. Baxevanis, EIC Tech Note, Draft

# Haissinski Solution For Longitudinal SC Wake

• Haissinski solution with longitudinal space charge<sup>1</sup>:

$$F(q) = \exp\left(-\frac{q^2}{2} + \frac{eI_0 Z_0 C (0.5 + \ln(b/\sigma))}{2\pi E_0 \eta_s \sigma_\delta^2 \gamma^2 \sigma_{z0}} \frac{F(q)}{\int dq F(q)}\right)$$
  
=  $\exp\left(-\frac{q^2}{2} + P_{SC} \frac{F(q)}{\int dq F(q)}\right) \quad (q = z/\sigma_{z0})$ 

• An equilibrium solution exists as long as

 $P_{SC} \leq P_{SC,max} \approx 1.55$ 

- The longitudinal instability threshold:
  - $I_{th,MWI} \sim 4 \text{ mA}$  for  $\sigma_{\delta}$ =6.4e-4 &  $\sigma_s$ =0.9 m
  - $I_{th,MWI} \sim 6 \text{ mA}$  for  $\sigma_{\delta}$ =7.4e-4 &  $\sigma_s$ =1.04 m
- The longitudinal space charge leads to bunch shortening.





Ryan Lindberg, Panageotis Baxevanis

### Haissinski Solution For Geom. & RW Wakefields

|                              |          | Number of<br>Component | $Z/n, \Omega$ | Iotal Longitudinal Geom. & RVV Wakefield                              |
|------------------------------|----------|------------------------|---------------|-----------------------------------------------------------------------|
| Resistive Wall               | RW       | 3844.63 m              | -             | $3 \times 10^{14}$                                                    |
| Beam Screen                  | BS       | 2880 m                 | 11e-3         | $2 \times 10^{14}$                                                    |
| Cold Bellows & BPM           | CBLW&BMP | 250                    | 8.3e-3        | 5 1×10 <sup>14</sup>                                                  |
| Injection Stripline Kickers  | SLK      | 20                     | 120e-3        | -1 × 10 <sup>14</sup>                                                 |
| Beam Screen Joints           | BSJ      | 1000                   | 8.6e-3        | $-2 \times 10^{14}$ $-0.02$ $0.00$ $0.02$ $0.04$ $0.06$ $0.08$ $0.10$ |
| Roman Pot                    | RP       | 4                      | 280e-3        | s (m)                                                                 |
| Warm Bellows                 | WBLW     | 200                    | 11.4e-3       | 0.4 1mA                                                               |
| Gate Valve                   |          |                        |               | 0.3 $10 \text{mA}$ $\int dq f_0(q) = 1$ $\underline{g}^{3.6}$         |
| Ø125                         | GV125    | 30                     | 0.42e-3       |                                                                       |
| Ø88                          | GV88     | 12                     | 0.24e-3       |                                                                       |
| Abort Kicker (Ferrite Based) | AK       | 5                      | 1750e-3       | 0.1                                                                   |
| Total:                       |          |                        | 2.2           |                                                                       |
|                              |          |                        |               | -6 -4 -2 0 2 4 6 Current (mA)                                         |

 $f_{0}(q) = A \exp\left[-\frac{1}{2}q^{2} + S\int_{q}^{\infty} dq'\int_{q'}^{\infty} dq'' f_{0}(q'')w(q''-q')\right] \qquad S = \frac{eI_{0}R_{s}\omega_{r}}{E_{0}v_{s}\omega_{0}\sigma_{\varepsilon}}$ 

• The geometric & RW wakefields lead to bunch lengthening.

### Particle Tracking And Instability Threshold

- ELEGANT particle tracking simulations<sup>1</sup>
- Haissinski distribution is used as the input file for ELEGANT
- Total wakefield:  $W_{tot}(s) = -W_{sc}(s) + W_{gm,rw}(s)$



The MWI threshold is ~7 mA

[1] M. Borland, "ELEGANT: A Flexible SDDS-Compliant Code for Accelerator Simulation", ANL, Argonne, IL, USA, Rep. ANL/APS LS-287, Aug. 2000

**Electron-Ion Collider** APEX Workshop 2025



Ь



# Double RF System (2<sup>nd</sup> Harmonic)

**Double RF System** 24 MHz RF System • Space Charge (SC) Impedance: 0.30 ---· no wake 0.6 --- no wake  $I_0 = 6 \, mA$ The Haissinski equilibrium exists at  $I_0 = 3 \, mA$ 0.25  $---- I_0 = 8 mA$ 0.5  $I_0 = 4 \, mA$  $-I_0 = 10 \, mA$  $I_0 = 5 \, mA$ 5 mA and at twice that value with 0.20 0.4 the 2<sup>nd</sup> harmonic cavity. (N) 0.15 (N) 0.3 0.2 0.10 • Geom. + SC Impedance: A factor 0.1 -0.05 of 1.5 increase in single-bunch 0.00 current at which the Haissinski -2 0 -6 -4 -2 z(m)z(m)equilibrium exists with the 2nd ---· no wake no wake Harmonic cavity<sup>1</sup>. 0.4 0.25  $-I_0 = 3 mA$  $I_0 = 8 \, mA$  $I_0 = 5 \, mA$  $I_0 = 9 \, mA$  $-I_0 = 6 mA$ 0.20  $I_0 = 10 \, mA$ 0.3 Working on the transverse  $I_0 = 7 mA$  $I_0 = 11 \, mA$ (<sup>2</sup>) (<sup>2</sup>) (<sup>2</sup>) (z) 1.2 space charge wake and its 0.10 effect on beam dynamics. 0.1 0.05 See talk by A. Fedotov – 0.00 0.0 Low-Energy Electron Cooling Experiments -2 -2 2 0 0 z(m)z(m)

Electron-Ion Collider APEX Workshop 2025

[1] P. Baxevanis and A. Blednykh, BNL-226418-2024-TECH

Ryan Lindberg & Panageotis Baxevanis

#### **APEX On Longitudinal Instabilities in RHIC**

- APEX
  - 11.30 17.30, May 16, 2024 Yellow Ring Z/n=5.4  $\Omega$
  - 10.00 16.00, September 25, 2024 Blue Ring Z/n=1.5  $\Omega$
- Participants
  - A. Blednykh, M. Blaskiewicz, V. Ptitsyn, V. Schoefer, C. Liu, K. Mernick, M. Sangroula, A. Fedotov, D. Kayran, S. Seletskiy, I. Pinaev, G. Robert-Demolaize, B. Lepore, T. Shrey, E. Becker.

• 9 MHz RF with  $\gamma_t$  = 23.7

#### Lattice with $\gamma_t$ =23.7

Config: dbconfig/170000000 Ramp: pp24-apex-hgt Blue Species: PP Yellow Species: PP Design DR8toDRG | DipoleHarmonics | FamilyTF **Options** BetaStarSlopes WarmTF | polyField | specificTF State 0ff 0n 0ff 0n 0n 0n 0n Blue DxAngles StoneEditor Yellow DipoleRamp BetaStar TuneChromPhase Optics Magnets Power Supplies Lattice Orbit Correctors Twiss Stone: injection Beta Function Tunes/Chroms Stone # 15 Time [sec] 0 Beta~1/2 [m~1/2] G 01 25.3786244712 Gamma 25,3589151986 BetaGamma Brho [T-m] 79,3667745 AND AND MOUNTAIN WAARAA WAARAA W **WARDON MADER Deriver Health and Health** Q× 29.6964998022 REPARTMENT V Antennetictud Hunny hours thratter/fer/fer/ handharfaa fa fa fa Qy 30,6931002024 ChromX 3.00000461032 ChromY 2.99999954061 1000 2000 3000 4000 ChromX2 181,969516863 Scoord [m] ChromY2 236,164757941 ChromX3 3284.50970576 \_\_\_\_\_ Y 2584,76116087 ChromY3 23,715082443 Dispersion Function GammaT 2.0 MMMM WWWW MWWW MMMM MMMMM MAAAAA Ξ Save to SXF File ... 1.0 8 Ô. 1000 2000 3000 4000 Scoord [m] -1.0IP Parameters Value/IP IP6 IP8 IP10 IP12 IP4 IP2 8.48370216 BetaX [m] 8.4161791 10.4395403 10.0906402 10.1644428 10,1328982 BetaY [m] 8.51109879 8.4320264 10.400712 9,9976126 10.077414 10.0947369 AlphaX 0.4550773 -0.420530411 -0.490587207 0.286302215 -0.5415163840.38850972 AlphaY -0.319439943 0.345379273 0.267417725 -0.163046057 0.337913215 -0.138569331 EtaX [m] 0.0174791949 0.00374350874 -0.0235582254 0.0152577547 -0.00287761785 0.00737504657 EtaY [m] Ô Ô Ô Ô Ó Ô EtaX' 0.00052117201 -0.00167792786 0.0034823474 -0.00216633189 0.00381434996 -0.00281782221 EtaY' 0 0 0 0 0 Ô

#### G. Robert-Demolaize

### 9 MHz RF cavity (new $\gamma_t$ =23.7)



- Instability related to beam intensity
- Beam is unstable above 1.5e11
- RF Voltage fixed at 15:12
- Beam profile needs to be compared at different intensities
- Evidence of Microwave Instability (MWI)



# • Sep. 25, 2024 Blue Ring Measurements $Z/n=1.5 \Omega$

## 9 MHz RF Cavity ( $\gamma_t$ =23.7), V<sub>RF</sub>=17 kV





# 9 MHz RF Cavity (New $\gamma_t$ =23.7), V<sub>RF</sub>=17 kV

A. Blednykh



**Electron-Ion Collider** 

**APEX Workshop 2025** 

- Beam is unstable at ~1.6 mA
  - The MWI threshold is approximately the same in both the Yellow and Blue Rings, while the geometric + RW impedance differs:  $Z/n = 1.5 \Omega$  (Blue Ring) vs.  $Z/n = 5.4 \Omega$  (Yellow Ring).

16

### **Geometric + RW vs. Space Charge Impedance**



 $\text{ReZ}_{\parallel}(\omega) = 0$  for Space Charge

• The dominant effect on the microwave instability threshold is due to the space charge impedance.

### **APEX Summary**

- Accelerator Physics Experiment (APEX) in RHIC on MWI
  - Yellow ring studies, where Z/n=5.4  $\Omega^1$  (May 16, 2024).
  - Blue ring studies, where  $Z/n=1.5 \Omega^1$  (Sep 25, 2024)
- Beam Instability (Yellow Ring)
  - Beam is single-bunch unstable at 1.9 mA (1.5e11) with 9 MHz RF at  $V_{RF}$  = 18kV (h=115)
    - $\gamma_t$ =23.7,  $\sigma_\tau$ =4.5 ns ( $\sigma_s$ =1.36 m) and  $\sigma_\delta$ =5.5e-4
  - Beam is stable with 28 MHz RF at  $V_{RF}$  = 40kV (h=358)
    - $\gamma_t$ =23.7,  $\sigma_\tau$ =4 ns ( $\sigma_s$ =1.2 m),  $\sigma_\delta$ =12.8e-4
- Space Charge Impedance
  - $\beta_x$  = 33.3 m,  $\beta_y$  = 32.1 m and  $b_{ave}$  =43 mm &  $\sigma_x$ =1.8 mm
  - $Z_{||}/n = 2.2 \Omega$  (RHIC)
  - $I_{th}$ =2.6 mA ( $\sigma_{\delta}$ =5.5e-4) &  $I_{th}$ =12.5 mA ( $\sigma_{\delta}$ =12.8e-4)

[1] M. Blaskiewicz, J.M. Brennan, K. Mernick, doi:10.18429/JACoW-IPAC2015-MOPMN020

# Summary

- At injection energy, the microwave instability threshold is primarily influenced by the longitudinal space charge impedance.
- APEX at RHIC for different rings confirms this.
- The beam longitudinally is stable at 23.8 GeV
- To perform particle tracking simulations, the Haissinski equilibrium is used as the initial distribution in ELEGANT.
- The effect of vertical space charge and transverse dipole impedance on transverse beam dynamics is a work in progress.