

Satoshi Yano (Hiroshima University) The ePIC Collaboration meeting @ Villa Mondragone 24/01/2025

- Two types of AC-LGAD TOF, BTOF and FTOF, are installed for the low-p PID
 - Complementary to the Cherenkov detectors

AC-LGAD TOF

- Two types of AC-LGAD TOF, BTOF and FTOF, are installed for • the low-p PID
 - Complementary to the Cherenkov detectors ____
- BTOF covers mid-rapidity (-1.33<n<1.74) composed of tilted lacksquare144 staves (288 half-staves)
 - п/К separation below 1.2 GeV/c is performed
 - Strip-type AC-LGAD sensor is used ____
 - It is placed at ~64 cm from the beam-pipe

AC-LGAD TOF

- Two types of AC-LGAD TOF, BTOF and FTOF, are installed for • the low-p PID
 - Complementary to the Cherenkov detectors
- BTOF covers mid-rapidity (-1.33<n<1.74) composed of tilted lacksquare144 staves (288 half-staves)
 - п/К separation below 1.2 GeV/c is performed ____
 - Strip-type AC-LGAD sensor is used
 - It is placed at ~64 cm from the beam-pipe
- FTOF covers forward-rapidity (1.84<η<3.61), hadron going • direction
 - п/К separation below 2.5 GeV/c is performed ____
 - Pixel-type AC-LGAD sensor is used

Baseline of sensor design

- **Pixel-type** AC-LGAD sensor, 1.6 x 1.6 cm² sensor size with 0.5 x 0.5 mm² metals, is used in **FTOF**
- The readout metal geometry is 32 x 32 and 1024 channels in total each
- 1 ASIC (2D 32x32) is attached to the one sensor

e with 0.5 x 0.5 mm² metals, is used in **FTOF** annels in total each

Baseline of sensor design

- **Pixel-type** AC-LGAD sensor, 1.6 x 1.6 cm² sensor size with 0.5 x 0.5 mm² metals, is used in **FTOF**
- The readout metal geometry is 32 x 32 and 1024 channels in total each
- 1 ASIC (2D 32x32) is attached to the one sensor
- The readout metal geometry is 64x2-256 64x2=128 channels in total each
- 21 ASICs are attached to each sensor with wire bonding •

Strip-type sensor, 3.2 x 4 cm² 3.2 x 2 cm² sensor size with 0.5 x 10 mm² metals with 0.5 mm pitch, is used in BTOF

- **BTOF** strip sensor lacksquare
 - **18432** sensors
 - **12** m²
 - 2.4 M readout channels

Baseline of stave structure

- The double-side sensor structure is the baseline for BTOF ullet
 - Due to readout geometry and efficient cooling ACISs —

Baseline of stave structure

- The double-side sensor structure is the baseline for BTOF lacksquare
 - Due to readout geometry and efficient cooling ACISs ____
- Development of the long (135cm) and low material FPC is very, very challenging \bullet
 - A total material budget of ~ 0.7 % X/X0 is the current target (2 ~ 3 % X/X0 in total)
 - We start thinking about the feasibility of using shortened pieces connecting with several bonding techniques

Baseline of stave structure

- The double-side sensor structure is the baseline for BTOF lacksquare
 - Due to readout geometry and efficient cooling ACISs
- Development of the long (135cm) and low material FPC is very, very challenging ${\color{black}\bullet}$
 - A total material budget of ~ 0.7 % X/X0 is the current target (2 ~ 3 % X/X0 in total)
 - We start thinking about the feasibility of using shortened pieces connecting with several bonding techniques
- The material budget effect on the hpDIRC PID performance is under evaluation lacksquare
 - We discussed how to evaluate the angle resolution on hpDIRC
 - The Tracklet method of BTOF and MPGD hits may be the smallest effects by BTOF material

proton beam Pixel sensors Varying pad geometry 20 μm 1400 Ω/□ 385 pF/mm² (PB1) 20 μm 1400 Ω/□ 385 pF/mm² (PB3) 20 μm 1400 Ω/□ 385 pF/mm² (PB4) 20 μm 400 Ω/□ 385 pF/mm² (PB4) 9 20 μm 400 Ω/□ 600 pF/mm² (PH4) 9 0 0.2 0.4 0.6 0.8 Track x position [mm]

overed by TOF

and pixel sensor, respectively

and pixel sensor, respectively

15 ps are assumed)

15 ps are assumed)

and pixel sensor, respectively

15 ps are assumed)

15 ps are assumed)

and pixel sensor, respectively

15 ps are assumed)

15 ps are assumed)

other

6

and pixel sensor, respectively

15 ps are assumed)

15 ps are assumed)

other

d forward, respectively?

•

TOF position

- ullet
- BTOF hadron going side is shortened by 21.5 cm • - -112.5cm < z < 176.5 cm → -112.5cm < z < 155.0 cm
 - -1.33<η<1.74 → -1.33<η<1.62</p>
- FTOF shifted toward IP by 17.5 cm ullet
 - $z = 185.0 \text{ cm} \rightarrow z = 167.5 \text{ cm}$
 - 1.84<η<3.61 → **1.75<η<3.51**

TOF position

- lacksquare
- BTOF hadron going side is shortened by 21.5 cm • - -112.5cm < z < 176.5 cm → -112.5cm < z < 155.0 cm
 - -1.33<η<1.74 → -1.33<η<1.62</p>
- FTOF shifted toward IP by 17.5 cm ullet
 - $z = 185.0 \text{ cm} \rightarrow z = 167.5 \text{ cm}$
 - 1.84<η<3.61 → **1.75<η<3.51**

TOF position

- lacksquare
- BTOF hadron going side is shortened by 21.5 cm ullet- -112.5cm < z < 176.5 cm → -112.5cm < z < 155.0 cm
 - -1.33<η<1.74 → -1.33<η<1.62</p>
- FTOF shifted toward IP by 17.5 cm ullet
 - $z = 185.0 \text{ cm} \rightarrow z = 167.5 \text{ cm}$
 - 1.84<η<3.61 → **1.75<η<3.51**
- **FTOF** position is closer than before lacksquare**PID performance is affected just a bit...**

TOF position

• Develop sensors more suitable for EIC

Future activity

- Develop sensors more suitable for EIC
- Realize strip sensor with $\sigma_t{<}30\text{ps}$ and $\sigma_{\text{pos}}{\sim}30\mu\text{m}$
 - The current sensor has excellent positional resolution (15~20µm), so we would like to investigate the possibility of sacrificing a little of this to improve timing resolution
 - For example, $0.5 \rightarrow 1$ mm pitch and $10 \rightarrow 5$ mm strip length

Future activity

- Develop sensors more suitable for EIC
- Realize strip sensor with $\sigma_t < 30$ ps and $\sigma_{pos} \sim 30 \mu m$ lacksquare
 - The current sensor has excellent positional resolution (15~20µm), so we would like to investigate the possibility of sacrificing a little of this to improve timing resolution
 - For example, $0.5 \rightarrow 1$ mm pitch and $10 \rightarrow 5$ mm strip length
- We will challenge to deploy the double metal layer \bullet
 - One side case has 156µm pitch, but the double-side case 312µm
 - ASIC can be put on the side of the sensor \rightarrow expand design possibility

Baseline

- TOF covers at low momentum range PID
- The sensor design baseline for BTOF has been changed •
- ullet
- We continue developing sensors more suitable for EIC lacksquare

Technological issues may lead to changes in the kinematic range covered, but not significantly

Extra slides

What we want to clarify today

What amount of BTOF material budget is allowed? What is the kinematic range that TOF should measure?

• HPK and BNL sensors show reasonable results in both strip and pixel types with the "BEST" bias voltage

- The higher performance of time resolution should be achieved when considering the electronics jitter and TO resolution

Roadmap (ver0)

-1900

CURRENT

2890		la (335) a	
-	5 <u></u>	hc:50	
			ł
*0	(2410) ~		
-540			
_	0 54 ⁴ 3 5 ¹ 4		
► 270 ►			
	1000 1350 (1430) (x:1480		
•	(1610) (1765) fx:1850		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-	← (1900)		

PROPOSAL

-(2675)			
2.5	•«:2.5		
	(2300) (230) (230)		

What must be discussed in this meeting

- What amount of BTOF material budget is allowed •
 - Effect on the angle resolution on the hpDIRC surface ____
 - We have a dedicated workfest this afternoon, "Tracking Pr
- What is the lower limit of time resolution performa •
 - Best timing performance is $\Delta t_{\text{Sensor}} = 35 \text{ ps} \rightarrow \Delta t_{\text{BTOF}} = 43$
- Is it possible to make a long and low-material bud •
 - What should we know and define? Another solution?
- What is the best stave design?
 - We must consider stave production yield and the line layout of the FPC
 - We may have to consider modularization to break it up into smaller pieces
- What is the impact of the plan to shorten the BTOF by 21cm? ۲
- How does the Japanese fund work with eRD109+eRD112?
 - The Japanese government (MEXT) has decided to support BTOF (in FY25 ~\$2M)

