Status and prospects of IRT 2.0
code adaptation to ePIC software stack

Alexander Kiselev
ePIC Collaboration Meeting, Frascati, 01/24/2025



Porting strategy

» Make use of a simplest possible pfRICH-like Cherenkov detector model rather
than dealing with either pfRICH or dRICH from the very beginning

» Alarge gas volume, aerogel layer, acrylic filter, large sensitive plane (single “sensor”)

» Code this geometry in a standalone pfRICH software suite, to start with, and make
sure IRT 2.0 reconstruction makes sense

» Mimic this pseudo-detector (codename QRICH) in ePIC software environment
» epic: dd4hep geometry description and optics file generation
» ElICrecon: a separate QRICH.cc plugin linked against IRT 2.0 library
» reconstruction_benchmarks: something along the lines of a standalone evaluation script

» Once this works and produces results similar to the standalone case, add the
required level of complexity matching ePIC pfRICH and dRICH description

» Mirrors, sectors, segmented photosensors, etc



IRT 2.0 core & calibration logic [in a standalone mode]

» Atypical R&D phase code: as much as possible happens on the fly, behind the
scenes, and does not require much of book-keeping when changing e.g. a mirror or
photosensor configuration

» Optical setup encoded during GEANT geometry creation and becomes a part of the same
ROOT file which contains the simulated data

» Event tree consists of relatively complicated C++ class instance memory dumps (serialized
and de-serialized by ROOT, therefore identical in GEANT simulation and event
reconstruction, without any data model), with a full history of every optical photon
propagation and relationships between radiators, charged particles and photons

» Un-detected photons (those which do not pass the QE normalization cut) are
extensively used for any on-the-fly calibrations:

> File-level: expected average emission point (Z-vtx) and effective average refractive index
per radiator for detected optical photons as a function of n

» Track-level: track parameters when crossing a particular radiator material (B-field
bending), determination of “blackout zones” polluted by photons from parasitic sources, etc

Similar to IRT 1.0, these ingredients need to be emulated for use in ePIC:



Input emulation
» Optical setup
» Presently created in QRICH_geo.cpp (epic) and imported in QRICH.cc (EICrecon)
» Bypasses the geometry service & requires epic code dependency on IRT libraries
» Greatly simplifies the debugging and possible future extensions (IMHO)

» This way, dRICH and pfRICH EICrecon codes can become virtually identical apart from QE
parameterization stuff and such (a factory importing hits and an optical black box description)

» Chances are Chris’s logic of populating volume attributes in the geometry description in
DRICH geo.cpp and parsing them back in DRICH.cc plugin when creating an optical
configuration in the EICrecon code startup is flexible & robust enough to handle required

multi-path optical configurations; let’s put this topic on hold for now

» Event tree (tracks and photons)
> Will see; cumbersome, but in principle should be similar to IRT 1.0

» Calibrations
» File-level calibrations will have to be created separately and imported as extra input files
> Track parameterization to be provided by ACTS (cut'n’paste from DRICH sources)

4



Current status

» Standalone QRICH code is a no-brainer
» Exists and is uploaded to https://github.com/eic/pfRICH/tree/main/simple

» QRICH_geo.cpp also exists and can be uploaded in a separate irt2.0 epic branch
» Both dd4hep geometry and optical configuration
» ElCrecon part work has just started though

» Can be uploaded to github as a separate branch nonetheless

Was a pain to re-start this integration exercise one more time; will try
to have at least a cut-down version working by the end of January

» pfRICH and dRICH optics configurations

» Should be a relatively straightforward incremental addition of features and debugging ...

» ... unless an optical ROOT file import in EICrecon is absolutely excluded


https://github.com/eic/pfRICH/tree/main/simple

Other considerations

» Digitization code / data model may require adjustments

>

Duplication, one-to-many relationship, etc

» EDMd4eic PID output implementation requires a separate discussion:

>

>
>
>

Should be event-level rather than track-level
For pfRICH may not want to disentangle imaging and timing information

May require inclusion of some proto-data rather than final PID quantities (allow variable
efficiency cuts, subset of tracks and / or pdg hypotheses, etc)

Better combine information of all PID detectors (and e/= input usable for calorimetry?)

[Has probably all been discussed during Chandra’s talk already]

Should probably be defined by the algorithm and user code implementation(s), later?



