
Status and prospects of IRT 2.0
code adaptation to ePIC software stack

Alexander Kiselev
ePIC Collaboration Meeting, Frascati, 01/24/2025

Porting strategy

2

Ø Make use of a simplest possible pfRICH-like Cherenkov detector model rather
than dealing with either pfRICH or dRICH from the very beginning
Ø A large gas volume, aerogel layer, acrylic filter, large sensitive plane (single “sensor”)

Ø Code this geometry in a standalone pfRICH software suite, to start with, and make
sure IRT 2.0 reconstruction makes sense

Ø Mimic this pseudo-detector (codename QRICH) in ePIC software environment
Ø epic: dd4hep geometry description and optics file generation
Ø EICrecon: a separate QRICH.cc plugin linked against IRT 2.0 library

Ø reconstruction_benchmarks: something along the lines of a standalone evaluation script

Ø Once this works and produces results similar to the standalone case, add the
required level of complexity matching ePIC pfRICH and dRICH description
Ø Mirrors, sectors, segmented photosensors, etc

IRT 2.0 core & calibration logic [in a standalone mode]

3

Ø A typical R&D phase code: as much as possible happens on the fly, behind the
scenes, and does not require much of book-keeping when changing e.g. a mirror or
photosensor configuration
Ø Optical setup encoded during GEANT geometry creation and becomes a part of the same

ROOT file which contains the simulated data

Ø Event tree consists of relatively complicated C++ class instance memory dumps (serialized
and de-serialized by ROOT, therefore identical in GEANT simulation and event
reconstruction, without any data model), with a full history of every optical photon
propagation and relationships between radiators, charged particles and photons

Ø Un-detected photons (those which do not pass the QE normalization cut) are
extensively used for any on-the-fly calibrations:
Ø File-level: expected average emission point (Z-vtx) and effective average refractive index

per radiator for detected optical photons as a function of h
Ø Track-level: track parameters when crossing a particular radiator material (B-field

bending), determination of “blackout zones” polluted by photons from parasitic sources, etc
Similar to IRT 1.0, these ingredients need to be emulated for use in ePIC

Input emulation

4

Ø Optical setup
Ø Presently created in QRICH_geo.cpp (epic) and imported in QRICH.cc (EICrecon)
Ø Bypasses the geometry service & requires epic code dependency on IRT libraries

Ø Greatly simplifies the debugging and possible future extensions (IMHO)

Ø This way, dRICH and pfRICH EICrecon codes can become virtually identical apart from QE
parameterization stuff and such (a factory importing hits and an optical black box description)

Ø Chances are Chris’s logic of populating volume attributes in the geometry description in
DRICH_geo.cpp and parsing them back in DRICH.cc plugin when creating an optical
configuration in the EICrecon code startup is flexible & robust enough to handle required
multi-path optical configurations; let’s put this topic on hold for now

Ø Event tree (tracks and photons)
Ø Will see; cumbersome, but in principle should be similar to IRT 1.0

Ø Calibrations
Ø File-level calibrations will have to be created separately and imported as extra input files
Ø Track parameterization to be provided by ACTS (cut’n’paste from DRICH sources)

Current status

5

Ø Standalone QRICH code is a no-brainer
Ø Exists and is uploaded to https://github.com/eic/pfRICH/tree/main/simple

Ø QRICH_geo.cpp also exists and can be uploaded in a separate irt2.0 epic branch
Ø Both dd4hep geometry and optical configuration

Ø EICrecon part work has just started though
Ø Can be uploaded to github as a separate branch nonetheless

Ø pfRICH and dRICH optics configurations
Ø Should be a relatively straightforward incremental addition of features and debugging …
Ø … unless an optical ROOT file import in EICrecon is absolutely excluded

Was a pain to re-start this integration exercise one more time; will try
to have at least a cut-down version working by the end of January

https://github.com/eic/pfRICH/tree/main/simple

Other considerations

6

Ø Digitization code / data model may require adjustments
Ø Duplication, one-to-many relationship, etc

Ø EDM4eic PID output implementation requires a separate discussion:
Ø Should be event-level rather than track-level
Ø For pfRICH may not want to disentangle imaging and timing information

Ø May require inclusion of some proto-data rather than final PID quantities (allow variable
efficiency cuts, subset of tracks and / or pdg hypotheses, etc)

Ø Better combine information of all PID detectors (and e/p input usable for calorimetry?)

Ø Should probably be defined by the algorithm and user code implementation(s), later?

[Has probably all been discussed during Chandra’s talk already]

